Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exexneq | Structured version Visualization version GIF version |
Description: There exist two different sets. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2370. (Revised by BJ, 31-May-2019.) Avoid ax-8 2106. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2169. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5361 instead of ax-pow 5297. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof from dtru 5368. (Revised by BJ, 2-Jan-2025.) |
Ref | Expression |
---|---|
exexneq | ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exel 5365 | . . 3 ⊢ ∃𝑥∃𝑧 𝑧 ∈ 𝑥 | |
2 | ax-nul 5239 | . . 3 ⊢ ∃𝑦∀𝑧 ¬ 𝑧 ∈ 𝑦 | |
3 | exdistrv 1957 | . . 3 ⊢ (∃𝑥∃𝑦(∃𝑧 𝑧 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ↔ (∃𝑥∃𝑧 𝑧 ∈ 𝑥 ∧ ∃𝑦∀𝑧 ¬ 𝑧 ∈ 𝑦)) | |
4 | 1, 2, 3 | mpbir2an 709 | . 2 ⊢ ∃𝑥∃𝑦(∃𝑧 𝑧 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) |
5 | ax9v1 2116 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) | |
6 | 5 | eximdv 1918 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (∃𝑧 𝑧 ∈ 𝑥 → ∃𝑧 𝑧 ∈ 𝑦)) |
7 | df-ex 1780 | . . . . . 6 ⊢ (∃𝑧 𝑧 ∈ 𝑦 ↔ ¬ ∀𝑧 ¬ 𝑧 ∈ 𝑦) | |
8 | 6, 7 | syl6ib 251 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∃𝑧 𝑧 ∈ 𝑥 → ¬ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) |
9 | imnan 401 | . . . . 5 ⊢ ((∃𝑧 𝑧 ∈ 𝑥 → ¬ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ↔ ¬ (∃𝑧 𝑧 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) | |
10 | 8, 9 | sylib 217 | . . . 4 ⊢ (𝑥 = 𝑦 → ¬ (∃𝑧 𝑧 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦)) |
11 | 10 | con2i 139 | . . 3 ⊢ ((∃𝑧 𝑧 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) → ¬ 𝑥 = 𝑦) |
12 | 11 | 2eximi 1836 | . 2 ⊢ (∃𝑥∃𝑦(∃𝑧 𝑧 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) → ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦) |
13 | 4, 12 | ax-mp 5 | 1 ⊢ ∃𝑥∃𝑦 ¬ 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∀wal 1537 ∃wex 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-9 2114 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 |
This theorem is referenced by: exneq 5367 |
Copyright terms: Public domain | W3C validator |