MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exexneq Structured version   Visualization version   GIF version

Theorem exexneq 5372
Description: There exist two different sets. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2371. (Revised by BJ, 31-May-2019.) Avoid ax-8 2107. (Revised by SN, 21-Sep-2023.) Avoid ax-12 2170. (Revised by Rohan Ridenour, 9-Oct-2024.) Use ax-pr 5367 instead of ax-pow 5303. (Revised by BTernaryTau, 3-Dec-2024.) Extract this result from the proof from dtru 5374. (Revised by BJ, 2-Jan-2025.)
Assertion
Ref Expression
exexneq 𝑥𝑦 ¬ 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem exexneq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 exel 5371 . . 3 𝑥𝑧 𝑧𝑥
2 ax-nul 5245 . . 3 𝑦𝑧 ¬ 𝑧𝑦
3 exdistrv 1958 . . 3 (∃𝑥𝑦(∃𝑧 𝑧𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ↔ (∃𝑥𝑧 𝑧𝑥 ∧ ∃𝑦𝑧 ¬ 𝑧𝑦))
41, 2, 3mpbir2an 708 . 2 𝑥𝑦(∃𝑧 𝑧𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦)
5 ax9v1 2117 . . . . . . 7 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
65eximdv 1919 . . . . . 6 (𝑥 = 𝑦 → (∃𝑧 𝑧𝑥 → ∃𝑧 𝑧𝑦))
7 df-ex 1781 . . . . . 6 (∃𝑧 𝑧𝑦 ↔ ¬ ∀𝑧 ¬ 𝑧𝑦)
86, 7syl6ib 250 . . . . 5 (𝑥 = 𝑦 → (∃𝑧 𝑧𝑥 → ¬ ∀𝑧 ¬ 𝑧𝑦))
9 imnan 400 . . . . 5 ((∃𝑧 𝑧𝑥 → ¬ ∀𝑧 ¬ 𝑧𝑦) ↔ ¬ (∃𝑧 𝑧𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
108, 9sylib 217 . . . 4 (𝑥 = 𝑦 → ¬ (∃𝑧 𝑧𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦))
1110con2i 139 . . 3 ((∃𝑧 𝑧𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) → ¬ 𝑥 = 𝑦)
12112eximi 1837 . 2 (∃𝑥𝑦(∃𝑧 𝑧𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) → ∃𝑥𝑦 ¬ 𝑥 = 𝑦)
134, 12ax-mp 5 1 𝑥𝑦 ¬ 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1538  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-9 2115  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1781
This theorem is referenced by:  exneq  5373
  Copyright terms: Public domain W3C validator