MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axprlem5 Structured version   Visualization version   GIF version

Theorem axprlem5 5445
Description: Lemma for axpr 5446. The second element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.)
Assertion
Ref Expression
axprlem5 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Distinct variable groups:   𝑦,𝑠   𝑤,𝑠   𝑛,𝑠

Proof of Theorem axprlem5
StepHypRef Expression
1 ax-nul 5324 . 2 𝑠𝑛 ¬ 𝑛𝑠
2 nfa1 2152 . . . 4 𝑠𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝)
3 nfv 1913 . . . 4 𝑠 𝑤 = 𝑦
42, 3nfan 1898 . . 3 𝑠(∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)
5 pm2.21 123 . . . . . . . . 9 𝑛𝑠 → (𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
65alimi 1809 . . . . . . . 8 (∀𝑛 ¬ 𝑛𝑠 → ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
76adantr 480 . . . . . . 7 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
8 df-ral 3068 . . . . . . 7 (∀𝑛𝑠𝑡 ¬ 𝑡𝑛 ↔ ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
97, 8sylibr 234 . . . . . 6 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → ∀𝑛𝑠𝑡 ¬ 𝑡𝑛)
10 sp 2184 . . . . . . 7 (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) → (∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝))
1110ad2antrl 727 . . . . . 6 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → (∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝))
129, 11mpd 15 . . . . 5 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → 𝑠𝑝)
13 simpl 482 . . . . . . 7 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → ∀𝑛 ¬ 𝑛𝑠)
14 alnex 1779 . . . . . . 7 (∀𝑛 ¬ 𝑛𝑠 ↔ ¬ ∃𝑛 𝑛𝑠)
1513, 14sylib 218 . . . . . 6 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → ¬ ∃𝑛 𝑛𝑠)
16 simprr 772 . . . . . 6 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑦)
17 ifpfal 1076 . . . . . . 7 (¬ ∃𝑛 𝑛𝑠 → (if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑦))
1817biimpar 477 . . . . . 6 ((¬ ∃𝑛 𝑛𝑠𝑤 = 𝑦) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
1915, 16, 18syl2anc 583 . . . . 5 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
2012, 19jca 511 . . . 4 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
2120expcom 413 . . 3 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦) → (∀𝑛 ¬ 𝑛𝑠 → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
224, 21eximd 2217 . 2 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦) → (∃𝑠𝑛 ¬ 𝑛𝑠 → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
231, 22mpi 20 1 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  if-wif 1063  wal 1535  wex 1777  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-tru 1540  df-ex 1778  df-nf 1782  df-ral 3068
This theorem is referenced by:  axpr  5446
  Copyright terms: Public domain W3C validator