MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axprlem5 Structured version   Visualization version   GIF version

Theorem axprlem5 5370
Description: Lemma for axpr 5371. The second element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.)
Assertion
Ref Expression
axprlem5 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Distinct variable groups:   𝑦,𝑠   𝑤,𝑠   𝑛,𝑠

Proof of Theorem axprlem5
StepHypRef Expression
1 ax-nul 5250 . 2 𝑠𝑛 ¬ 𝑛𝑠
2 nfa1 2147 . . . 4 𝑠𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝)
3 nfv 1916 . . . 4 𝑠 𝑤 = 𝑦
42, 3nfan 1901 . . 3 𝑠(∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)
5 pm2.21 123 . . . . . . . . 9 𝑛𝑠 → (𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
65alimi 1812 . . . . . . . 8 (∀𝑛 ¬ 𝑛𝑠 → ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
76adantr 481 . . . . . . 7 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
8 df-ral 3062 . . . . . . 7 (∀𝑛𝑠𝑡 ¬ 𝑡𝑛 ↔ ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
97, 8sylibr 233 . . . . . 6 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → ∀𝑛𝑠𝑡 ¬ 𝑡𝑛)
10 sp 2175 . . . . . . 7 (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) → (∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝))
1110ad2antrl 725 . . . . . 6 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → (∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝))
129, 11mpd 15 . . . . 5 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → 𝑠𝑝)
13 simpl 483 . . . . . . 7 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → ∀𝑛 ¬ 𝑛𝑠)
14 alnex 1782 . . . . . . 7 (∀𝑛 ¬ 𝑛𝑠 ↔ ¬ ∃𝑛 𝑛𝑠)
1513, 14sylib 217 . . . . . 6 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → ¬ ∃𝑛 𝑛𝑠)
16 simprr 770 . . . . . 6 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → 𝑤 = 𝑦)
17 ifpfal 1074 . . . . . . 7 (¬ ∃𝑛 𝑛𝑠 → (if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑦))
1817biimpar 478 . . . . . 6 ((¬ ∃𝑛 𝑛𝑠𝑤 = 𝑦) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
1915, 16, 18syl2anc 584 . . . . 5 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
2012, 19jca 512 . . . 4 ((∀𝑛 ¬ 𝑛𝑠 ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦)) → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
2120expcom 414 . . 3 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦) → (∀𝑛 ¬ 𝑛𝑠 → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
224, 21eximd 2208 . 2 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦) → (∃𝑠𝑛 ¬ 𝑛𝑠 → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
231, 22mpi 20 1 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑦) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  if-wif 1060  wal 1538  wex 1780  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-12 2170  ax-nul 5250
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-tru 1543  df-ex 1781  df-nf 1785  df-ral 3062
This theorem is referenced by:  axpr  5371
  Copyright terms: Public domain W3C validator