MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axprlem4 Structured version   Visualization version   GIF version

Theorem axprlem4 5349
Description: Lemma for axpr 5351. The first element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.)
Assertion
Ref Expression
axprlem4 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Distinct variable groups:   𝑥,𝑠   𝑤,𝑠   𝑡,𝑛,𝑠

Proof of Theorem axprlem4
StepHypRef Expression
1 axprlem1 5346 . . 3 𝑠𝑛(∀𝑡 ¬ 𝑡𝑛𝑛𝑠)
21bm1.3ii 5226 . 2 𝑠𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛)
3 nfa1 2148 . . . 4 𝑠𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝)
4 nfv 1917 . . . 4 𝑠 𝑤 = 𝑥
53, 4nfan 1902 . . 3 𝑠(∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)
6 biimp 214 . . . . . . . . 9 ((𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
76alimi 1814 . . . . . . . 8 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
8 df-ral 3069 . . . . . . . 8 (∀𝑛𝑠𝑡 ¬ 𝑡𝑛 ↔ ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
97, 8sylibr 233 . . . . . . 7 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∀𝑛𝑠𝑡 ¬ 𝑡𝑛)
10 sp 2176 . . . . . . 7 (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) → (∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝))
119, 10mpan9 507 . . . . . 6 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ ∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝)) → 𝑠𝑝)
1211adantrr 714 . . . . 5 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → 𝑠𝑝)
13 ax-nul 5230 . . . . . . 7 𝑛𝑡 ¬ 𝑡𝑛
14 nfa1 2148 . . . . . . . 8 𝑛𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛)
15 sp 2176 . . . . . . . . 9 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛))
1615biimprd 247 . . . . . . . 8 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (∀𝑡 ¬ 𝑡𝑛𝑛𝑠))
1714, 16eximd 2209 . . . . . . 7 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (∃𝑛𝑡 ¬ 𝑡𝑛 → ∃𝑛 𝑛𝑠))
1813, 17mpi 20 . . . . . 6 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∃𝑛 𝑛𝑠)
19 simprr 770 . . . . . 6 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → 𝑤 = 𝑥)
20 ifptru 1073 . . . . . . 7 (∃𝑛 𝑛𝑠 → (if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑥))
2120biimpar 478 . . . . . 6 ((∃𝑛 𝑛𝑠𝑤 = 𝑥) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
2218, 19, 21syl2an2r 682 . . . . 5 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
2312, 22jca 512 . . . 4 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
2423expcom 414 . . 3 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
255, 24eximd 2209 . 2 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → (∃𝑠𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
262, 25mpi 20 1 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  if-wif 1060  wal 1537  wex 1782  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-12 2171  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-tru 1542  df-ex 1783  df-nf 1787  df-ral 3069
This theorem is referenced by:  axpr  5351
  Copyright terms: Public domain W3C validator