MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axprlem4 Structured version   Visualization version   GIF version

Theorem axprlem4 5344
Description: Lemma for axpr 5346. The first element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.)
Assertion
Ref Expression
axprlem4 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Distinct variable groups:   𝑥,𝑠   𝑤,𝑠   𝑡,𝑛,𝑠

Proof of Theorem axprlem4
StepHypRef Expression
1 axprlem1 5341 . . 3 𝑠𝑛(∀𝑡 ¬ 𝑡𝑛𝑛𝑠)
21bm1.3ii 5221 . 2 𝑠𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛)
3 nfa1 2150 . . . 4 𝑠𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝)
4 nfv 1918 . . . 4 𝑠 𝑤 = 𝑥
53, 4nfan 1903 . . 3 𝑠(∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)
6 biimp 214 . . . . . . . . 9 ((𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
76alimi 1815 . . . . . . . 8 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
8 df-ral 3068 . . . . . . . 8 (∀𝑛𝑠𝑡 ¬ 𝑡𝑛 ↔ ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
97, 8sylibr 233 . . . . . . 7 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∀𝑛𝑠𝑡 ¬ 𝑡𝑛)
10 sp 2178 . . . . . . 7 (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) → (∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝))
119, 10mpan9 506 . . . . . 6 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ ∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝)) → 𝑠𝑝)
1211adantrr 713 . . . . 5 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → 𝑠𝑝)
13 ax-nul 5225 . . . . . . 7 𝑛𝑡 ¬ 𝑡𝑛
14 nfa1 2150 . . . . . . . 8 𝑛𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛)
15 sp 2178 . . . . . . . . 9 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛))
1615biimprd 247 . . . . . . . 8 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (∀𝑡 ¬ 𝑡𝑛𝑛𝑠))
1714, 16eximd 2212 . . . . . . 7 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (∃𝑛𝑡 ¬ 𝑡𝑛 → ∃𝑛 𝑛𝑠))
1813, 17mpi 20 . . . . . 6 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∃𝑛 𝑛𝑠)
19 simprr 769 . . . . . 6 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → 𝑤 = 𝑥)
20 ifptru 1072 . . . . . . 7 (∃𝑛 𝑛𝑠 → (if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑥))
2120biimpar 477 . . . . . 6 ((∃𝑛 𝑛𝑠𝑤 = 𝑥) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
2218, 19, 21syl2an2r 681 . . . . 5 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
2312, 22jca 511 . . . 4 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
2423expcom 413 . . 3 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
255, 24eximd 2212 . 2 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → (∃𝑠𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
262, 25mpi 20 1 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  if-wif 1059  wal 1537  wex 1783  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-10 2139  ax-12 2173  ax-sep 5218  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-tru 1542  df-ex 1784  df-nf 1788  df-ral 3068
This theorem is referenced by:  axpr  5346
  Copyright terms: Public domain W3C validator