| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axprlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for axpr 5365. If an existing set of empty sets corresponds to one element of the pair, then the element is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) (Revised by Matthew House, 18-Sep-2025.) |
| Ref | Expression |
|---|---|
| axprlem4.1 | ⊢ ∃𝑠∀𝑛𝜑 |
| axprlem4.2 | ⊢ (𝜑 → (𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) |
| axprlem4.3 | ⊢ (∀𝑛𝜑 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑣)) |
| Ref | Expression |
|---|---|
| axprlem4 | ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (𝑤 = 𝑣 → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axprlem4.1 | . . 3 ⊢ ∃𝑠∀𝑛𝜑 | |
| 2 | axprlem4.2 | . . . . . . . 8 ⊢ (𝜑 → (𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) | |
| 3 | 2 | alimi 1812 | . . . . . . 7 ⊢ (∀𝑛𝜑 → ∀𝑛(𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) |
| 4 | df-ral 3048 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 ↔ ∀𝑛(𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) | |
| 5 | 3, 4 | sylibr 234 | . . . . . 6 ⊢ (∀𝑛𝜑 → ∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛) |
| 6 | 5 | imim1i 63 | . . . . 5 ⊢ ((∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (∀𝑛𝜑 → 𝑠 ∈ 𝑝)) |
| 7 | 6 | ancrd 551 | . . . 4 ⊢ ((∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (∀𝑛𝜑 → (𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑))) |
| 8 | 7 | aleximi 1833 | . . 3 ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (∃𝑠∀𝑛𝜑 → ∃𝑠(𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑))) |
| 9 | 1, 8 | mpi 20 | . 2 ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → ∃𝑠(𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑)) |
| 10 | axprlem4.3 | . . . . 5 ⊢ (∀𝑛𝜑 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑣)) | |
| 11 | 10 | biimprcd 250 | . . . 4 ⊢ (𝑤 = 𝑣 → (∀𝑛𝜑 → if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) |
| 12 | 11 | anim2d 612 | . . 3 ⊢ (𝑤 = 𝑣 → ((𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑) → (𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
| 13 | 12 | eximdv 1918 | . 2 ⊢ (𝑤 = 𝑣 → (∃𝑠(𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
| 14 | 9, 13 | syl5com 31 | 1 ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (𝑤 = 𝑣 → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 ∀wal 1539 ∃wex 1780 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 |
| This theorem is referenced by: axpr 5365 |
| Copyright terms: Public domain | W3C validator |