MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axprlem4 Structured version   Visualization version   GIF version

Theorem axprlem4 5444
Description: Lemma for axpr 5446. The first element of the pair is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.)
Assertion
Ref Expression
axprlem4 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Distinct variable groups:   𝑥,𝑠   𝑤,𝑠   𝑡,𝑛,𝑠

Proof of Theorem axprlem4
StepHypRef Expression
1 axprlem1 5441 . . 3 𝑠𝑛(∀𝑡 ¬ 𝑡𝑛𝑛𝑠)
21bm1.3ii 5320 . 2 𝑠𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛)
3 nfa1 2152 . . . 4 𝑠𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝)
4 nfv 1913 . . . 4 𝑠 𝑤 = 𝑥
53, 4nfan 1898 . . 3 𝑠(∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)
6 biimp 215 . . . . . . . . 9 ((𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
76alimi 1809 . . . . . . . 8 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
8 df-ral 3068 . . . . . . . 8 (∀𝑛𝑠𝑡 ¬ 𝑡𝑛 ↔ ∀𝑛(𝑛𝑠 → ∀𝑡 ¬ 𝑡𝑛))
97, 8sylibr 234 . . . . . . 7 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∀𝑛𝑠𝑡 ¬ 𝑡𝑛)
10 sp 2184 . . . . . . 7 (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) → (∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝))
119, 10mpan9 506 . . . . . 6 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ ∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝)) → 𝑠𝑝)
1211adantrr 716 . . . . 5 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → 𝑠𝑝)
13 ax-nul 5324 . . . . . . 7 𝑛𝑡 ¬ 𝑡𝑛
14 nfa1 2152 . . . . . . . 8 𝑛𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛)
15 sp 2184 . . . . . . . . 9 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛))
1615biimprd 248 . . . . . . . 8 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (∀𝑡 ¬ 𝑡𝑛𝑛𝑠))
1714, 16eximd 2217 . . . . . . 7 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (∃𝑛𝑡 ¬ 𝑡𝑛 → ∃𝑛 𝑛𝑠))
1813, 17mpi 20 . . . . . 6 (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∃𝑛 𝑛𝑠)
19 simprr 772 . . . . . 6 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → 𝑤 = 𝑥)
20 ifptru 1075 . . . . . . 7 (∃𝑛 𝑛𝑠 → (if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑥))
2120biimpar 477 . . . . . 6 ((∃𝑛 𝑛𝑠𝑤 = 𝑥) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
2218, 19, 21syl2an2r 684 . . . . 5 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))
2312, 22jca 511 . . . 4 ((∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) ∧ (∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥)) → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
2423expcom 413 . . 3 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → (∀𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → (𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
255, 24eximd 2217 . 2 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → (∃𝑠𝑛(𝑛𝑠 ↔ ∀𝑡 ¬ 𝑡𝑛) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))))
262, 25mpi 20 1 ((∀𝑠(∀𝑛𝑠𝑡 ¬ 𝑡𝑛𝑠𝑝) ∧ 𝑤 = 𝑥) → ∃𝑠(𝑠𝑝 ∧ if-(∃𝑛 𝑛𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  if-wif 1063  wal 1535  wex 1777  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-10 2141  ax-12 2178  ax-sep 5317  ax-nul 5324  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-tru 1540  df-ex 1778  df-nf 1782  df-ral 3068
This theorem is referenced by:  axpr  5446
  Copyright terms: Public domain W3C validator