![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axprlem4 | Structured version Visualization version GIF version |
Description: Lemma for axpr 5433. If an existing set of empty sets corresponds to one element of the pair, then the element is included in any superset of the set whose existence is asserted by the axiom of replacement. (Contributed by Rohan Ridenour, 10-Aug-2023.) (Revised by BJ, 13-Aug-2023.) (Revised by Matthew House, 18-Sep-2025.) |
Ref | Expression |
---|---|
axprlem4.1 | ⊢ ∃𝑠∀𝑛𝜑 |
axprlem4.2 | ⊢ (𝜑 → (𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) |
axprlem4.3 | ⊢ (∀𝑛𝜑 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑣)) |
Ref | Expression |
---|---|
axprlem4 | ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (𝑤 = 𝑣 → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axprlem4.1 | . . 3 ⊢ ∃𝑠∀𝑛𝜑 | |
2 | axprlem4.2 | . . . . . . . 8 ⊢ (𝜑 → (𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) | |
3 | 2 | alimi 1808 | . . . . . . 7 ⊢ (∀𝑛𝜑 → ∀𝑛(𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) |
4 | df-ral 3060 | . . . . . . 7 ⊢ (∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 ↔ ∀𝑛(𝑛 ∈ 𝑠 → ∀𝑡 ¬ 𝑡 ∈ 𝑛)) | |
5 | 3, 4 | sylibr 234 | . . . . . 6 ⊢ (∀𝑛𝜑 → ∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛) |
6 | 5 | imim1i 63 | . . . . 5 ⊢ ((∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (∀𝑛𝜑 → 𝑠 ∈ 𝑝)) |
7 | 6 | ancrd 551 | . . . 4 ⊢ ((∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (∀𝑛𝜑 → (𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑))) |
8 | 7 | aleximi 1829 | . . 3 ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (∃𝑠∀𝑛𝜑 → ∃𝑠(𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑))) |
9 | 1, 8 | mpi 20 | . 2 ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → ∃𝑠(𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑)) |
10 | axprlem4.3 | . . . . 5 ⊢ (∀𝑛𝜑 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑣)) | |
11 | 10 | biimprcd 250 | . . . 4 ⊢ (𝑤 = 𝑣 → (∀𝑛𝜑 → if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) |
12 | 11 | anim2d 612 | . . 3 ⊢ (𝑤 = 𝑣 → ((𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑) → (𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
13 | 12 | eximdv 1915 | . 2 ⊢ (𝑤 = 𝑣 → (∃𝑠(𝑠 ∈ 𝑝 ∧ ∀𝑛𝜑) → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
14 | 9, 13 | syl5com 31 | 1 ⊢ (∀𝑠(∀𝑛 ∈ 𝑠 ∀𝑡 ¬ 𝑡 ∈ 𝑛 → 𝑠 ∈ 𝑝) → (𝑤 = 𝑣 → ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 ∀wal 1535 ∃wex 1776 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-ral 3060 |
This theorem is referenced by: axpr 5433 |
Copyright terms: Public domain | W3C validator |