| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ax-pow | Structured version Visualization version GIF version | ||
| Description: Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the power set of a given set 𝑥 i.e. contains every subset of 𝑥. The variant axpow2 5365 uses explicit subset notation. A version using class notation is pwex 5378. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| ax-pow | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vw | . . . . . . 7 setvar 𝑤 | |
| 2 | vz | . . . . . . 7 setvar 𝑧 | |
| 3 | 1, 2 | wel 2109 | . . . . . 6 wff 𝑤 ∈ 𝑧 |
| 4 | vx | . . . . . . 7 setvar 𝑥 | |
| 5 | 1, 4 | wel 2109 | . . . . . 6 wff 𝑤 ∈ 𝑥 |
| 6 | 3, 5 | wi 4 | . . . . 5 wff (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) |
| 7 | 6, 1 | wal 1538 | . . . 4 wff ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) |
| 8 | vy | . . . . 5 setvar 𝑦 | |
| 9 | 2, 8 | wel 2109 | . . . 4 wff 𝑧 ∈ 𝑦 |
| 10 | 7, 9 | wi 4 | . . 3 wff (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| 11 | 10, 2 | wal 1538 | . 2 wff ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| 12 | 11, 8 | wex 1779 | 1 wff ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: zfpow 5364 axpow2 5365 axprlem1 5421 axprlem2 5422 sn-exelALT 42235 |
| Copyright terms: Public domain | W3C validator |