Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-pow | Structured version Visualization version GIF version |
Description: Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set 𝑦 exists that includes the power set of a given set 𝑥 i.e. contains every subset of 𝑥. The variant axpow2 5285 uses explicit subset notation. A version using class notation is pwex 5298. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
ax-pow | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vw | . . . . . . 7 setvar 𝑤 | |
2 | vz | . . . . . . 7 setvar 𝑧 | |
3 | 1, 2 | wel 2109 | . . . . . 6 wff 𝑤 ∈ 𝑧 |
4 | vx | . . . . . . 7 setvar 𝑥 | |
5 | 1, 4 | wel 2109 | . . . . . 6 wff 𝑤 ∈ 𝑥 |
6 | 3, 5 | wi 4 | . . . . 5 wff (𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) |
7 | 6, 1 | wal 1537 | . . . 4 wff ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) |
8 | vy | . . . . 5 setvar 𝑦 | |
9 | 2, 8 | wel 2109 | . . . 4 wff 𝑧 ∈ 𝑦 |
10 | 7, 9 | wi 4 | . . 3 wff (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
11 | 10, 2 | wal 1537 | . 2 wff ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
12 | 11, 8 | wex 1783 | 1 wff ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
This axiom is referenced by: zfpow 5284 axpow2 5285 axprlem1 5341 axprlem2 5342 sn-el 40115 |
Copyright terms: Public domain | W3C validator |