Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfpow Structured version   Visualization version   GIF version

Theorem zfpow 5248
 Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
zfpow 𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem zfpow
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-pow 5247 . 2 𝑥𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥)
2 elequ1 2122 . . . . . . 7 (𝑤 = 𝑥 → (𝑤𝑦𝑥𝑦))
3 elequ1 2122 . . . . . . 7 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
42, 3imbi12d 348 . . . . . 6 (𝑤 = 𝑥 → ((𝑤𝑦𝑤𝑧) ↔ (𝑥𝑦𝑥𝑧)))
54cbvalvw 2044 . . . . 5 (∀𝑤(𝑤𝑦𝑤𝑧) ↔ ∀𝑥(𝑥𝑦𝑥𝑧))
65imbi1i 353 . . . 4 ((∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ (∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
76albii 1821 . . 3 (∀𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ ∀𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
87exbii 1849 . 2 (∃𝑥𝑦(∀𝑤(𝑤𝑦𝑤𝑧) → 𝑦𝑥) ↔ ∃𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥))
91, 8mpbi 233 1 𝑥𝑦(∀𝑥(𝑥𝑦𝑥𝑧) → 𝑦𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1536  ∃wex 1781 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-pow 5247 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782 This theorem is referenced by:  el  5251  axpowndlem2  10005
 Copyright terms: Public domain W3C validator