Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfpow | Structured version Visualization version GIF version |
Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.) |
Ref | Expression |
---|---|
zfpow | ⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pow 5291 | . 2 ⊢ ∃𝑥∀𝑦(∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) | |
2 | elequ1 2116 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | |
3 | elequ1 2116 | . . . . . . 7 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧)) | |
4 | 2, 3 | imbi12d 344 | . . . . . 6 ⊢ (𝑤 = 𝑥 → ((𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) ↔ (𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧))) |
5 | 4 | cbvalvw 2042 | . . . . 5 ⊢ (∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) ↔ ∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧)) |
6 | 5 | imbi1i 349 | . . . 4 ⊢ ((∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ (∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
7 | 6 | albii 1825 | . . 3 ⊢ (∀𝑦(∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
8 | 7 | exbii 1853 | . 2 ⊢ (∃𝑥∀𝑦(∀𝑤(𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧) → 𝑦 ∈ 𝑥) ↔ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) |
9 | 1, 8 | mpbi 229 | 1 ⊢ ∃𝑥∀𝑦(∀𝑥(𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∃wex 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-pow 5291 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 |
This theorem is referenced by: el 5295 axpowndlem2 10338 |
Copyright terms: Public domain | W3C validator |