Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-exelALT Structured version   Visualization version   GIF version

Theorem sn-exelALT 40396
Description: Alternate proof of exel 5365, avoiding ax-pr 5361 but requiring ax-5 1911, ax-9 2114, and ax-pow 5297. This is similar to how elALT2 5301 uses ax-pow 5297 instead of ax-pr 5361 compared to el 5370. (Contributed by SN, 18-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sn-exelALT 𝑦𝑥 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem sn-exelALT
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-pow 5297 . 2 𝑦𝑥(∀𝑤(𝑤𝑥𝑤𝑧) → 𝑥𝑦)
2 ax6ev 1971 . . . 4 𝑥 𝑥 = 𝑧
3 ax9v1 2116 . . . . 5 (𝑥 = 𝑧 → (𝑤𝑥𝑤𝑧))
43alrimiv 1928 . . . 4 (𝑥 = 𝑧 → ∀𝑤(𝑤𝑥𝑤𝑧))
52, 4eximii 1837 . . 3 𝑥𝑤(𝑤𝑥𝑤𝑧)
6 exim 1834 . . 3 (∀𝑥(∀𝑤(𝑤𝑥𝑤𝑧) → 𝑥𝑦) → (∃𝑥𝑤(𝑤𝑥𝑤𝑧) → ∃𝑥 𝑥𝑦))
75, 6mpi 20 . 2 (∀𝑥(∀𝑤(𝑤𝑥𝑤𝑧) → 𝑥𝑦) → ∃𝑥 𝑥𝑦)
81, 7eximii 1837 1 𝑦𝑥 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-9 2114  ax-pow 5297
This theorem depends on definitions:  df-bi 206  df-ex 1780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator