| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-exelALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of exel 5438, avoiding ax-pr 5432 but requiring ax-5 1910, ax-9 2118, and ax-pow 5365. This is similar to how elALT2 5369 uses ax-pow 5365 instead of ax-pr 5432 compared to el 5442. (Contributed by SN, 18-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sn-exelALT | ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pow 5365 | . 2 ⊢ ∃𝑦∀𝑥(∀𝑤(𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧) → 𝑥 ∈ 𝑦) | |
| 2 | ax6ev 1969 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑧 | |
| 3 | ax9v1 2120 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧)) | |
| 4 | 3 | alrimiv 1927 | . . . 4 ⊢ (𝑥 = 𝑧 → ∀𝑤(𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧)) |
| 5 | 2, 4 | eximii 1837 | . . 3 ⊢ ∃𝑥∀𝑤(𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧) |
| 6 | exim 1834 | . . 3 ⊢ (∀𝑥(∀𝑤(𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧) → 𝑥 ∈ 𝑦) → (∃𝑥∀𝑤(𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧) → ∃𝑥 𝑥 ∈ 𝑦)) | |
| 7 | 5, 6 | mpi 20 | . 2 ⊢ (∀𝑥(∀𝑤(𝑤 ∈ 𝑥 → 𝑤 ∈ 𝑧) → 𝑥 ∈ 𝑦) → ∃𝑥 𝑥 ∈ 𝑦) |
| 8 | 1, 7 | eximii 1837 | 1 ⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-9 2118 ax-pow 5365 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |