MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpow2 Structured version   Visualization version   GIF version

Theorem axpow2 5285
Description: A variant of the Axiom of Power Sets ax-pow 5283 using subset notation. Problem in [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axpow2 𝑦𝑧(𝑧𝑥𝑧𝑦)
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem axpow2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-pow 5283 . 2 𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
2 dfss2 3903 . . . . 5 (𝑧𝑥 ↔ ∀𝑤(𝑤𝑧𝑤𝑥))
32imbi1i 349 . . . 4 ((𝑧𝑥𝑧𝑦) ↔ (∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
43albii 1823 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
54exbii 1851 . 2 (∃𝑦𝑧(𝑧𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
61, 5mpbir 230 1 𝑦𝑧(𝑧𝑥𝑧𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  axpow3  5286  vpwex  5295
  Copyright terms: Public domain W3C validator