![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpow2 | Structured version Visualization version GIF version |
Description: A variant of the Axiom of Power Sets ax-pow 5383 using subset notation. Problem in [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow2 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pow 5383 | . 2 ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
2 | df-ss 3993 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
4 | 3 | albii 1817 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
5 | 4 | exbii 1846 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
6 | 1, 5 | mpbir 231 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1777 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-ss 3993 |
This theorem is referenced by: axpow3 5386 vpwex 5395 |
Copyright terms: Public domain | W3C validator |