![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axpow2 | Structured version Visualization version GIF version |
Description: A variant of the Axiom of Power Sets ax-pow 5363 using subset notation. Problem in [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) |
Ref | Expression |
---|---|
axpow2 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pow 5363 | . 2 ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
2 | dfss2 3968 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
4 | 3 | albii 1820 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
5 | 4 | exbii 1849 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
6 | 1, 5 | mpbir 230 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1538 ∃wex 1780 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-pow 5363 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 |
This theorem is referenced by: axpow3 5366 vpwex 5375 |
Copyright terms: Public domain | W3C validator |