|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > axpow2 | Structured version Visualization version GIF version | ||
| Description: A variant of the Axiom of Power Sets ax-pow 5364 using subset notation. Problem in [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.) | 
| Ref | Expression | 
|---|---|
| axpow2 | ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-pow 5364 | . 2 ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | |
| 2 | df-ss 3967 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
| 3 | 2 | imbi1i 349 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | 
| 4 | 3 | albii 1818 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | 
| 5 | 4 | exbii 1847 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | 
| 6 | 1, 5 | mpbir 231 | 1 ⊢ ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 ⊆ wss 3950 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-pow 5364 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-ss 3967 | 
| This theorem is referenced by: axpow3 5367 vpwex 5376 | 
| Copyright terms: Public domain | W3C validator |