| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intv | Structured version Visualization version GIF version | ||
| Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
| Ref | Expression |
|---|---|
| intv | ⊢ ∩ V = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5265 | . 2 ⊢ ∅ ∈ V | |
| 2 | int0el 4946 | . 2 ⊢ (∅ ∈ V → ∩ V = ∅) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ V = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 df-int 4914 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |