![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intv | Structured version Visualization version GIF version |
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
Ref | Expression |
---|---|
intv | ⊢ ∩ V = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4984 | . 2 ⊢ ∅ ∈ V | |
2 | int0el 4698 | . 2 ⊢ (∅ ∈ V → ∩ V = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ V = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∅c0 4115 ∩ cint 4667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-nul 4983 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-dif 3772 df-in 3776 df-ss 3783 df-nul 4116 df-int 4668 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |