Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intv | Structured version Visualization version GIF version |
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
Ref | Expression |
---|---|
intv | ⊢ ∩ V = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5224 | . 2 ⊢ ∅ ∈ V | |
2 | int0el 4907 | . 2 ⊢ (∅ ∈ V → ∩ V = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ V = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∅c0 4254 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2710 ax-nul 5223 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-v 3425 df-dif 3887 df-in 3891 df-ss 3901 df-nul 4255 df-int 4877 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |