![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intv | Structured version Visualization version GIF version |
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.) |
Ref | Expression |
---|---|
intv | ⊢ ∩ V = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5313 | . 2 ⊢ ∅ ∈ V | |
2 | int0el 4984 | . 2 ⊢ (∅ ∈ V → ∩ V = ∅) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ V = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-ss 3980 df-nul 4340 df-int 4952 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |