MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intv Structured version   Visualization version   GIF version

Theorem intv 5322
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
intv V = ∅

Proof of Theorem intv
StepHypRef Expression
1 0ex 5265 . 2 ∅ ∈ V
2 int0el 4946 . 2 (∅ ∈ V → V = ∅)
31, 2ax-mp 5 1 V = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-ss 3934  df-nul 4300  df-int 4914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator