MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intv Structured version   Visualization version   GIF version

Theorem intv 5362
Description: The intersection of the universal class is empty. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
intv V = ∅

Proof of Theorem intv
StepHypRef Expression
1 0ex 5307 . 2 ∅ ∈ V
2 int0el 4983 . 2 (∅ ∈ V → V = ∅)
31, 2ax-mp 5 1 V = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3473  c0 4322   cint 4950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-int 4951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator