Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
pwex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwexg 5301 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: p0ex 5307 pp0ex 5309 ord3ex 5310 abexssex 7813 fnpm 8623 canth2 8917 dffi3 9190 r1sucg 9527 r1pwALT 9604 rankuni 9621 rankc2 9629 rankxpu 9634 rankmapu 9636 rankxplim 9637 r0weon 9768 aceq3lem 9876 dfac5lem4 9882 dfac2a 9885 dfac2b 9886 pwdju1 9946 ackbij2lem2 9996 ackbij2lem3 9997 fin23lem17 10094 domtriomlem 10198 axdc2lem 10204 axdc3lem 10206 axdclem2 10276 alephsucpw 10326 canthp1lem1 10408 gchac 10437 gruina 10574 npex 10742 nrex1 10820 pnfex 11028 mnfxr 11032 ixxex 13090 prdsvallem 17165 prdsds 17175 prdshom 17178 ismre 17299 fnmre 17300 fnmrc 17316 mrcfval 17317 mrisval 17339 wunfunc 17614 wunfuncOLD 17615 catcfuccl 17834 catcfucclOLD 17835 catcxpccl 17924 catcxpcclOLD 17925 lubfval 18068 glbfval 18081 issubm 18442 issubg 18755 cntzfval 18926 sylow1lem2 19204 lsmfval 19243 pj1fval 19300 issubrg 20024 lssset 20195 lspfval 20235 islbs 20338 lbsext 20425 lbsexg 20426 sraval 20438 ocvfval 20871 cssval 20887 isobs 20927 islinds 21016 aspval 21077 istopon 22061 dmtopon 22072 fncld 22173 leordtval2 22363 cnpfval 22385 iscnp2 22390 kgenf 22692 xkoopn 22740 xkouni 22750 dfac14 22769 xkoccn 22770 prdstopn 22779 xkoco1cn 22808 xkoco2cn 22809 xkococn 22811 xkoinjcn 22838 isfbas 22980 uzrest 23048 acufl 23068 alexsubALTlem2 23199 tsmsval2 23281 ustfn 23353 ustn0 23372 ishtpy 24135 vitali 24777 sspval 29085 shex 29574 hsupval 29696 fpwrelmap 31068 fpwrelmapffs 31069 dmvlsiga 32097 eulerpartlem1 32334 eulerpartgbij 32339 eulerpartlemmf 32342 coinflippv 32450 ballotlemoex 32452 reprval 32590 kur14lem9 33176 satfvsuclem1 33321 mpstval 33497 mclsrcl 33523 mclsval 33525 heibor1lem 35967 heibor 35979 idlval 36171 psubspset 37758 paddfval 37811 pclfvalN 37903 polfvalN 37918 psubclsetN 37950 docafvalN 39136 djafvalN 39148 dicval 39190 dochfval 39364 djhfval 39411 islpolN 39497 mzpclval 40547 eldiophb 40579 rpnnen3 40854 dfac11 40887 rgspnval 40993 clsk1independent 41656 dmvolsal 43885 ovnval 44079 smfresal 44322 sprbisymrel 44951 uspgrex 45312 uspgrbisymrelALT 45317 issubmgm 45343 lincop 45749 setrec2fun 46398 vsetrec 46408 elpglem3 46418 |
Copyright terms: Public domain | W3C validator |