| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwex | ⊢ 𝒫 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwexg 5320 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-pow 5307 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: p0ex 5326 pp0ex 5328 ord3ex 5329 abexssex 7912 mptmpoopabbrd 8022 fnpm 8768 canth2 9054 dffi3 9340 r1sucg 9684 r1pwALT 9761 rankuni 9778 rankc2 9786 rankxpu 9791 rankmapu 9793 rankxplim 9794 r0weon 9925 aceq3lem 10033 dfac5lem4 10039 dfac5lem4OLD 10041 dfac2a 10043 dfac2b 10044 pwdju1 10104 ackbij2lem2 10152 ackbij2lem3 10153 fin23lem17 10251 domtriomlem 10355 axdc2lem 10361 axdc3lem 10363 axdclem2 10433 alephsucpw 10483 canthp1lem1 10565 gchac 10594 gruina 10731 npex 10899 nrex1 10977 pnfex 11187 mnfxr 11191 ixxex 13277 prdsvallem 17376 prdsds 17386 prdshom 17389 ismre 17510 fnmre 17511 fnmrc 17531 mrcfval 17532 mrisval 17554 wunfunc 17826 catcfuccl 18043 catcxpccl 18131 lubfval 18272 glbfval 18285 issubmgm 18594 issubm 18695 issubg 19023 cntzfval 19217 sylow1lem2 19496 lsmfval 19535 pj1fval 19591 issubrng 20450 issubrg 20474 rgspnval 20515 lssset 20854 lspfval 20894 islbs 20998 lbsext 21088 lbsexg 21089 sraval 21097 ocvfval 21591 cssval 21607 isobs 21645 islinds 21734 aspval 21798 istopon 22815 dmtopon 22826 fncld 22925 leordtval2 23115 cnpfval 23137 iscnp2 23142 kgenf 23444 xkoopn 23492 xkouni 23502 dfac14 23521 xkoccn 23522 prdstopn 23531 xkoco1cn 23560 xkoco2cn 23561 xkococn 23563 xkoinjcn 23590 isfbas 23732 uzrest 23800 acufl 23820 alexsubALTlem2 23951 tsmsval2 24033 ustfn 24105 ustn0 24124 ishtpy 24887 vitali 25530 madefi 27845 sspval 30685 shex 31174 hsupval 31296 fpwrelmap 32689 fpwrelmapffs 32690 dmvlsiga 34095 eulerpartlem1 34334 eulerpartgbij 34339 eulerpartlemmf 34342 coinflippv 34451 ballotlemoex 34453 reprval 34577 kur14lem9 35186 satfvsuclem1 35331 mpstval 35507 mclsrcl 35533 mclsval 35535 heibor1lem 37788 heibor 37800 idlval 37992 psubspset 39723 paddfval 39776 pclfvalN 39868 polfvalN 39883 psubclsetN 39915 docafvalN 41101 djafvalN 41113 dicval 41155 dochfval 41329 djhfval 41376 islpolN 41462 mzpclval 42698 eldiophb 42730 rpnnen3 43005 dfac11 43035 clsk1independent 44019 permaxpow 44983 dmvolsal 46328 ovnval 46523 smfresal 46770 sprbisymrel 47484 grtri 47925 uspgrex 48135 uspgrbisymrelALT 48140 lincop 48394 setrec2fun 49678 elpglem3 49699 |
| Copyright terms: Public domain | W3C validator |