| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwex | ⊢ 𝒫 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwexg 5336 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: p0ex 5342 pp0ex 5344 ord3ex 5345 abexssex 7952 mptmpoopabbrd 8062 fnpm 8810 canth2 9100 dffi3 9389 r1sucg 9729 r1pwALT 9806 rankuni 9823 rankc2 9831 rankxpu 9836 rankmapu 9838 rankxplim 9839 r0weon 9972 aceq3lem 10080 dfac5lem4 10086 dfac5lem4OLD 10088 dfac2a 10090 dfac2b 10091 pwdju1 10151 ackbij2lem2 10199 ackbij2lem3 10200 fin23lem17 10298 domtriomlem 10402 axdc2lem 10408 axdc3lem 10410 axdclem2 10480 alephsucpw 10530 canthp1lem1 10612 gchac 10641 gruina 10778 npex 10946 nrex1 11024 pnfex 11234 mnfxr 11238 ixxex 13324 prdsvallem 17424 prdsds 17434 prdshom 17437 ismre 17558 fnmre 17559 fnmrc 17575 mrcfval 17576 mrisval 17598 wunfunc 17870 catcfuccl 18087 catcxpccl 18175 lubfval 18316 glbfval 18329 issubmgm 18636 issubm 18737 issubg 19065 cntzfval 19259 sylow1lem2 19536 lsmfval 19575 pj1fval 19631 issubrng 20463 issubrg 20487 rgspnval 20528 lssset 20846 lspfval 20886 islbs 20990 lbsext 21080 lbsexg 21081 sraval 21089 ocvfval 21582 cssval 21598 isobs 21636 islinds 21725 aspval 21789 istopon 22806 dmtopon 22817 fncld 22916 leordtval2 23106 cnpfval 23128 iscnp2 23133 kgenf 23435 xkoopn 23483 xkouni 23493 dfac14 23512 xkoccn 23513 prdstopn 23522 xkoco1cn 23551 xkoco2cn 23552 xkococn 23554 xkoinjcn 23581 isfbas 23723 uzrest 23791 acufl 23811 alexsubALTlem2 23942 tsmsval2 24024 ustfn 24096 ustn0 24115 ishtpy 24878 vitali 25521 madefi 27831 sspval 30659 shex 31148 hsupval 31270 fpwrelmap 32663 fpwrelmapffs 32664 dmvlsiga 34126 eulerpartlem1 34365 eulerpartgbij 34370 eulerpartlemmf 34373 coinflippv 34482 ballotlemoex 34484 reprval 34608 kur14lem9 35208 satfvsuclem1 35353 mpstval 35529 mclsrcl 35555 mclsval 35557 heibor1lem 37810 heibor 37822 idlval 38014 psubspset 39745 paddfval 39798 pclfvalN 39890 polfvalN 39905 psubclsetN 39937 docafvalN 41123 djafvalN 41135 dicval 41177 dochfval 41351 djhfval 41398 islpolN 41484 mzpclval 42720 eldiophb 42752 rpnnen3 43028 dfac11 43058 clsk1independent 44042 permaxpow 45006 dmvolsal 46351 ovnval 46546 smfresal 46793 sprbisymrel 47504 grtri 47943 uspgrex 48142 uspgrbisymrelALT 48147 lincop 48401 setrec2fun 49685 elpglem3 49706 |
| Copyright terms: Public domain | W3C validator |