| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwex | ⊢ 𝒫 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwexg 5316 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pow 5303 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: p0ex 5322 pp0ex 5324 ord3ex 5325 abexssex 7902 mptmpoopabbrd 8012 fnpm 8758 canth2 9043 dffi3 9315 r1sucg 9659 r1pwALT 9736 rankuni 9753 rankc2 9761 rankxpu 9766 rankmapu 9768 rankxplim 9769 r0weon 9900 aceq3lem 10008 dfac5lem4 10014 dfac5lem4OLD 10016 dfac2a 10018 dfac2b 10019 pwdju1 10079 ackbij2lem2 10127 ackbij2lem3 10128 fin23lem17 10226 domtriomlem 10330 axdc2lem 10336 axdc3lem 10338 axdclem2 10408 alephsucpw 10458 canthp1lem1 10540 gchac 10569 gruina 10706 npex 10874 nrex1 10952 pnfex 11162 mnfxr 11166 ixxex 13253 prdsvallem 17355 prdsds 17365 prdshom 17368 ismre 17489 fnmre 17490 fnmrc 17510 mrcfval 17511 mrisval 17533 wunfunc 17805 catcfuccl 18022 catcxpccl 18110 lubfval 18251 glbfval 18264 issubmgm 18607 issubm 18708 issubg 19036 cntzfval 19230 sylow1lem2 19509 lsmfval 19548 pj1fval 19604 issubrng 20460 issubrg 20484 rgspnval 20525 lssset 20864 lspfval 20904 islbs 21008 lbsext 21098 lbsexg 21099 sraval 21107 ocvfval 21601 cssval 21617 isobs 21655 islinds 21744 aspval 21808 istopon 22825 dmtopon 22836 fncld 22935 leordtval2 23125 cnpfval 23147 iscnp2 23152 kgenf 23454 xkoopn 23502 xkouni 23512 dfac14 23531 xkoccn 23532 prdstopn 23541 xkoco1cn 23570 xkoco2cn 23571 xkococn 23573 xkoinjcn 23600 isfbas 23742 uzrest 23810 acufl 23830 alexsubALTlem2 23961 tsmsval2 24043 ustfn 24115 ustn0 24134 ishtpy 24896 vitali 25539 madefi 27856 sspval 30698 shex 31187 hsupval 31309 fpwrelmap 32711 fpwrelmapffs 32712 dmvlsiga 34137 eulerpartlem1 34375 eulerpartgbij 34380 eulerpartlemmf 34383 coinflippv 34492 ballotlemoex 34494 reprval 34618 kur14lem9 35246 satfvsuclem1 35391 mpstval 35567 mclsrcl 35593 mclsval 35595 heibor1lem 37848 heibor 37860 idlval 38052 psubspset 39782 paddfval 39835 pclfvalN 39927 polfvalN 39942 psubclsetN 39974 docafvalN 41160 djafvalN 41172 dicval 41214 dochfval 41388 djhfval 41435 islpolN 41521 mzpclval 42757 eldiophb 42789 rpnnen3 43064 dfac11 43094 clsk1independent 44078 permaxpow 45041 dmvolsal 46383 ovnval 46578 smfresal 46825 sprbisymrel 47529 grtri 47970 uspgrex 48180 uspgrbisymrelALT 48185 lincop 48439 setrec2fun 49723 elpglem3 49744 |
| Copyright terms: Public domain | W3C validator |