| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwex | ⊢ 𝒫 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwexg 5318 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-pow 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-pw 4551 |
| This theorem is referenced by: p0ex 5324 pp0ex 5326 ord3ex 5327 abexssex 7908 mptmpoopabbrd 8018 fnpm 8764 canth2 9050 dffi3 9322 r1sucg 9669 r1pwALT 9746 rankuni 9763 rankc2 9771 rankxpu 9776 rankmapu 9778 rankxplim 9779 r0weon 9910 aceq3lem 10018 dfac5lem4 10024 dfac5lem4OLD 10026 dfac2a 10028 dfac2b 10029 pwdju1 10089 ackbij2lem2 10137 ackbij2lem3 10138 fin23lem17 10236 domtriomlem 10340 axdc2lem 10346 axdc3lem 10348 axdclem2 10418 alephsucpw 10468 canthp1lem1 10550 gchac 10579 gruina 10716 npex 10884 nrex1 10962 pnfex 11172 mnfxr 11176 ixxex 13258 prdsvallem 17360 prdsds 17370 prdshom 17373 ismre 17494 fnmre 17495 fnmrc 17515 mrcfval 17516 mrisval 17538 wunfunc 17810 catcfuccl 18027 catcxpccl 18115 lubfval 18256 glbfval 18269 issubmgm 18612 issubm 18713 issubg 19041 cntzfval 19234 sylow1lem2 19513 lsmfval 19552 pj1fval 19608 issubrng 20464 issubrg 20488 rgspnval 20529 lssset 20868 lspfval 20908 islbs 21012 lbsext 21102 lbsexg 21103 sraval 21111 ocvfval 21605 cssval 21621 isobs 21659 islinds 21748 aspval 21812 istopon 22828 dmtopon 22839 fncld 22938 leordtval2 23128 cnpfval 23150 iscnp2 23155 kgenf 23457 xkoopn 23505 xkouni 23515 dfac14 23534 xkoccn 23535 prdstopn 23544 xkoco1cn 23573 xkoco2cn 23574 xkococn 23576 xkoinjcn 23603 isfbas 23745 uzrest 23813 acufl 23833 alexsubALTlem2 23964 tsmsval2 24046 ustfn 24118 ustn0 24137 ishtpy 24899 vitali 25542 madefi 27859 sspval 30705 shex 31194 hsupval 31316 fpwrelmap 32720 fpwrelmapffs 32721 dmvlsiga 34163 eulerpartlem1 34401 eulerpartgbij 34406 eulerpartlemmf 34409 coinflippv 34518 ballotlemoex 34520 reprval 34644 kur14lem9 35279 satfvsuclem1 35424 mpstval 35600 mclsrcl 35626 mclsval 35628 heibor1lem 37870 heibor 37882 idlval 38074 psubspset 39864 paddfval 39917 pclfvalN 40009 polfvalN 40024 psubclsetN 40056 docafvalN 41242 djafvalN 41254 dicval 41296 dochfval 41470 djhfval 41517 islpolN 41603 mzpclval 42843 eldiophb 42875 rpnnen3 43150 dfac11 43180 clsk1independent 44164 permaxpow 45127 dmvolsal 46469 ovnval 46664 smfresal 46911 sprbisymrel 47624 grtri 48065 uspgrex 48275 uspgrbisymrelALT 48280 lincop 48534 setrec2fun 49818 elpglem3 49839 |
| Copyright terms: Public domain | W3C validator |