Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
pwex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwexg 5296 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: p0ex 5302 pp0ex 5304 ord3ex 5305 abexssex 7786 fnpm 8581 canth2 8866 dffi3 9120 r1sucg 9458 r1pwALT 9535 rankuni 9552 rankc2 9560 rankxpu 9565 rankmapu 9567 rankxplim 9568 r0weon 9699 aceq3lem 9807 dfac5lem4 9813 dfac2a 9816 dfac2b 9817 pwdju1 9877 ackbij2lem2 9927 ackbij2lem3 9928 fin23lem17 10025 domtriomlem 10129 axdc2lem 10135 axdc3lem 10137 axdclem2 10207 alephsucpw 10257 canthp1lem1 10339 gchac 10368 gruina 10505 npex 10673 nrex1 10751 pnfex 10959 mnfxr 10963 ixxex 13019 prdsvallem 17082 prdsds 17092 prdshom 17095 ismre 17216 fnmre 17217 fnmrc 17233 mrcfval 17234 mrisval 17256 wunfunc 17530 wunfuncOLD 17531 catcfuccl 17750 catcfucclOLD 17751 catcxpccl 17840 catcxpcclOLD 17841 lubfval 17983 glbfval 17996 issubm 18357 issubg 18670 cntzfval 18841 sylow1lem2 19119 lsmfval 19158 pj1fval 19215 issubrg 19939 lssset 20110 lspfval 20150 islbs 20253 lbsext 20340 lbsexg 20341 sraval 20353 ocvfval 20783 cssval 20799 isobs 20837 islinds 20926 aspval 20987 istopon 21969 dmtopon 21980 fncld 22081 leordtval2 22271 cnpfval 22293 iscnp2 22298 kgenf 22600 xkoopn 22648 xkouni 22658 dfac14 22677 xkoccn 22678 prdstopn 22687 xkoco1cn 22716 xkoco2cn 22717 xkococn 22719 xkoinjcn 22746 isfbas 22888 uzrest 22956 acufl 22976 alexsubALTlem2 23107 tsmsval2 23189 ustfn 23261 ustn0 23280 ishtpy 24041 vitali 24682 sspval 28986 shex 29475 hsupval 29597 fpwrelmap 30970 fpwrelmapffs 30971 dmvlsiga 31997 eulerpartlem1 32234 eulerpartgbij 32239 eulerpartlemmf 32242 coinflippv 32350 ballotlemoex 32352 reprval 32490 kur14lem9 33076 satfvsuclem1 33221 mpstval 33397 mclsrcl 33423 mclsval 33425 heibor1lem 35894 heibor 35906 idlval 36098 psubspset 37685 paddfval 37738 pclfvalN 37830 polfvalN 37845 psubclsetN 37877 docafvalN 39063 djafvalN 39075 dicval 39117 dochfval 39291 djhfval 39338 islpolN 39424 mzpclval 40463 eldiophb 40495 rpnnen3 40770 dfac11 40803 rgspnval 40909 clsk1independent 41545 dmvolsal 43775 ovnval 43969 smfresal 44209 sprbisymrel 44839 uspgrex 45200 uspgrbisymrelALT 45205 issubmgm 45231 lincop 45637 setrec2fun 46284 vsetrec 46294 elpglem3 46304 |
Copyright terms: Public domain | W3C validator |