Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
pwex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwexg 5301 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3427 𝒫 cpw 4535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5223 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3429 df-in 3895 df-ss 3905 df-pw 4537 |
This theorem is referenced by: p0ex 5307 pp0ex 5309 ord3ex 5310 abexssex 7791 fnpm 8586 canth2 8871 dffi3 9136 r1sucg 9474 r1pwALT 9551 rankuni 9568 rankc2 9576 rankxpu 9581 rankmapu 9583 rankxplim 9584 r0weon 9715 aceq3lem 9823 dfac5lem4 9829 dfac2a 9832 dfac2b 9833 pwdju1 9893 ackbij2lem2 9943 ackbij2lem3 9944 fin23lem17 10041 domtriomlem 10145 axdc2lem 10151 axdc3lem 10153 axdclem2 10223 alephsucpw 10273 canthp1lem1 10355 gchac 10384 gruina 10521 npex 10689 nrex1 10767 pnfex 10975 mnfxr 10979 ixxex 13035 prdsvallem 17109 prdsds 17119 prdshom 17122 ismre 17243 fnmre 17244 fnmrc 17260 mrcfval 17261 mrisval 17283 wunfunc 17558 wunfuncOLD 17559 catcfuccl 17778 catcfucclOLD 17779 catcxpccl 17868 catcxpcclOLD 17869 lubfval 18012 glbfval 18025 issubm 18386 issubg 18699 cntzfval 18870 sylow1lem2 19148 lsmfval 19187 pj1fval 19244 issubrg 19968 lssset 20139 lspfval 20179 islbs 20282 lbsext 20369 lbsexg 20370 sraval 20382 ocvfval 20815 cssval 20831 isobs 20871 islinds 20960 aspval 21021 istopon 22005 dmtopon 22016 fncld 22117 leordtval2 22307 cnpfval 22329 iscnp2 22334 kgenf 22636 xkoopn 22684 xkouni 22694 dfac14 22713 xkoccn 22714 prdstopn 22723 xkoco1cn 22752 xkoco2cn 22753 xkococn 22755 xkoinjcn 22782 isfbas 22924 uzrest 22992 acufl 23012 alexsubALTlem2 23143 tsmsval2 23225 ustfn 23297 ustn0 23316 ishtpy 24079 vitali 24720 sspval 29026 shex 29515 hsupval 29637 fpwrelmap 31010 fpwrelmapffs 31011 dmvlsiga 32039 eulerpartlem1 32276 eulerpartgbij 32281 eulerpartlemmf 32284 coinflippv 32392 ballotlemoex 32394 reprval 32532 kur14lem9 33118 satfvsuclem1 33263 mpstval 33439 mclsrcl 33465 mclsval 33467 heibor1lem 35936 heibor 35948 idlval 36140 psubspset 37727 paddfval 37780 pclfvalN 37872 polfvalN 37887 psubclsetN 37919 docafvalN 39105 djafvalN 39117 dicval 39159 dochfval 39333 djhfval 39380 islpolN 39466 mzpclval 40505 eldiophb 40537 rpnnen3 40812 dfac11 40845 rgspnval 40951 clsk1independent 41587 dmvolsal 43817 ovnval 44011 smfresal 44251 sprbisymrel 44881 uspgrex 45242 uspgrbisymrelALT 45247 issubmgm 45273 lincop 45679 setrec2fun 46328 vsetrec 46338 elpglem3 46348 |
Copyright terms: Public domain | W3C validator |