![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
pwex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwexg 5383 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3477 𝒫 cpw 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-pow 5370 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-pw 4606 |
This theorem is referenced by: p0ex 5389 pp0ex 5391 ord3ex 5392 abexssex 7993 mptmpoopabbrd 8103 fnpm 8872 canth2 9168 dffi3 9468 r1sucg 9806 r1pwALT 9883 rankuni 9900 rankc2 9908 rankxpu 9913 rankmapu 9915 rankxplim 9916 r0weon 10049 aceq3lem 10157 dfac5lem4 10163 dfac5lem4OLD 10165 dfac2a 10167 dfac2b 10168 pwdju1 10228 ackbij2lem2 10276 ackbij2lem3 10277 fin23lem17 10375 domtriomlem 10479 axdc2lem 10485 axdc3lem 10487 axdclem2 10557 alephsucpw 10607 canthp1lem1 10689 gchac 10718 gruina 10855 npex 11023 nrex1 11101 pnfex 11311 mnfxr 11315 ixxex 13394 prdsvallem 17500 prdsds 17510 prdshom 17513 ismre 17634 fnmre 17635 fnmrc 17651 mrcfval 17652 mrisval 17674 wunfunc 17951 wunfuncOLD 17952 catcfuccl 18172 catcfucclOLD 18173 catcxpccl 18262 catcxpcclOLD 18263 lubfval 18407 glbfval 18420 issubmgm 18727 issubm 18828 issubg 19156 cntzfval 19350 sylow1lem2 19631 lsmfval 19670 pj1fval 19726 issubrng 20563 issubrg 20587 rgspnval 20628 lssset 20948 lspfval 20988 islbs 21092 lbsext 21182 lbsexg 21183 sraval 21191 ocvfval 21701 cssval 21717 isobs 21757 islinds 21846 aspval 21910 istopon 22933 dmtopon 22944 fncld 23045 leordtval2 23235 cnpfval 23257 iscnp2 23262 kgenf 23564 xkoopn 23612 xkouni 23622 dfac14 23641 xkoccn 23642 prdstopn 23651 xkoco1cn 23680 xkoco2cn 23681 xkococn 23683 xkoinjcn 23710 isfbas 23852 uzrest 23920 acufl 23940 alexsubALTlem2 24071 tsmsval2 24153 ustfn 24225 ustn0 24244 ishtpy 25017 vitali 25661 madefi 27964 sspval 30751 shex 31240 hsupval 31362 fpwrelmap 32750 fpwrelmapffs 32751 dmvlsiga 34109 eulerpartlem1 34348 eulerpartgbij 34353 eulerpartlemmf 34356 coinflippv 34464 ballotlemoex 34466 reprval 34603 kur14lem9 35198 satfvsuclem1 35343 mpstval 35519 mclsrcl 35545 mclsval 35547 heibor1lem 37795 heibor 37807 idlval 37999 psubspset 39726 paddfval 39779 pclfvalN 39871 polfvalN 39886 psubclsetN 39918 docafvalN 41104 djafvalN 41116 dicval 41158 dochfval 41332 djhfval 41379 islpolN 41465 mzpclval 42712 eldiophb 42744 rpnnen3 43020 dfac11 43050 clsk1independent 44035 dmvolsal 46301 ovnval 46496 smfresal 46743 sprbisymrel 47423 grtri 47844 uspgrex 47993 uspgrbisymrelALT 47998 lincop 48253 setrec2fun 48922 elpglem3 48943 |
Copyright terms: Public domain | W3C validator |