| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwex | ⊢ 𝒫 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwexg 5348 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-pow 5335 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: p0ex 5354 pp0ex 5356 ord3ex 5357 abexssex 7967 mptmpoopabbrd 8077 fnpm 8846 canth2 9142 dffi3 9441 r1sucg 9781 r1pwALT 9858 rankuni 9875 rankc2 9883 rankxpu 9888 rankmapu 9890 rankxplim 9891 r0weon 10024 aceq3lem 10132 dfac5lem4 10138 dfac5lem4OLD 10140 dfac2a 10142 dfac2b 10143 pwdju1 10203 ackbij2lem2 10251 ackbij2lem3 10252 fin23lem17 10350 domtriomlem 10454 axdc2lem 10460 axdc3lem 10462 axdclem2 10532 alephsucpw 10582 canthp1lem1 10664 gchac 10693 gruina 10830 npex 10998 nrex1 11076 pnfex 11286 mnfxr 11290 ixxex 13371 prdsvallem 17466 prdsds 17476 prdshom 17479 ismre 17600 fnmre 17601 fnmrc 17617 mrcfval 17618 mrisval 17640 wunfunc 17912 catcfuccl 18129 catcxpccl 18217 lubfval 18358 glbfval 18371 issubmgm 18678 issubm 18779 issubg 19107 cntzfval 19301 sylow1lem2 19578 lsmfval 19617 pj1fval 19673 issubrng 20505 issubrg 20529 rgspnval 20570 lssset 20888 lspfval 20928 islbs 21032 lbsext 21122 lbsexg 21123 sraval 21131 ocvfval 21624 cssval 21640 isobs 21678 islinds 21767 aspval 21831 istopon 22848 dmtopon 22859 fncld 22958 leordtval2 23148 cnpfval 23170 iscnp2 23175 kgenf 23477 xkoopn 23525 xkouni 23535 dfac14 23554 xkoccn 23555 prdstopn 23564 xkoco1cn 23593 xkoco2cn 23594 xkococn 23596 xkoinjcn 23623 isfbas 23765 uzrest 23833 acufl 23853 alexsubALTlem2 23984 tsmsval2 24066 ustfn 24138 ustn0 24157 ishtpy 24920 vitali 25564 madefi 27867 sspval 30650 shex 31139 hsupval 31261 fpwrelmap 32656 fpwrelmapffs 32657 dmvlsiga 34106 eulerpartlem1 34345 eulerpartgbij 34350 eulerpartlemmf 34353 coinflippv 34462 ballotlemoex 34464 reprval 34588 kur14lem9 35182 satfvsuclem1 35327 mpstval 35503 mclsrcl 35529 mclsval 35531 heibor1lem 37779 heibor 37791 idlval 37983 psubspset 39709 paddfval 39762 pclfvalN 39854 polfvalN 39869 psubclsetN 39901 docafvalN 41087 djafvalN 41099 dicval 41141 dochfval 41315 djhfval 41362 islpolN 41448 mzpclval 42695 eldiophb 42727 rpnnen3 43003 dfac11 43033 clsk1independent 44017 permaxpow 44982 dmvolsal 46323 ovnval 46518 smfresal 46765 sprbisymrel 47461 grtri 47900 uspgrex 48073 uspgrbisymrelALT 48078 lincop 48332 setrec2fun 49504 elpglem3 49525 |
| Copyright terms: Public domain | W3C validator |