![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
pwex.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwex | ⊢ 𝒫 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwexg 5396 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: p0ex 5402 pp0ex 5404 ord3ex 5405 abexssex 8011 mptmpoopabbrd 8121 fnpm 8892 canth2 9196 dffi3 9500 r1sucg 9838 r1pwALT 9915 rankuni 9932 rankc2 9940 rankxpu 9945 rankmapu 9947 rankxplim 9948 r0weon 10081 aceq3lem 10189 dfac5lem4 10195 dfac5lem4OLD 10197 dfac2a 10199 dfac2b 10200 pwdju1 10260 ackbij2lem2 10308 ackbij2lem3 10309 fin23lem17 10407 domtriomlem 10511 axdc2lem 10517 axdc3lem 10519 axdclem2 10589 alephsucpw 10639 canthp1lem1 10721 gchac 10750 gruina 10887 npex 11055 nrex1 11133 pnfex 11343 mnfxr 11347 ixxex 13418 prdsvallem 17514 prdsds 17524 prdshom 17527 ismre 17648 fnmre 17649 fnmrc 17665 mrcfval 17666 mrisval 17688 wunfunc 17965 wunfuncOLD 17966 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 lubfval 18420 glbfval 18433 issubmgm 18740 issubm 18838 issubg 19166 cntzfval 19360 sylow1lem2 19641 lsmfval 19680 pj1fval 19736 issubrng 20573 issubrg 20599 lssset 20954 lspfval 20994 islbs 21098 lbsext 21188 lbsexg 21189 sraval 21197 ocvfval 21707 cssval 21723 isobs 21763 islinds 21852 aspval 21916 istopon 22939 dmtopon 22950 fncld 23051 leordtval2 23241 cnpfval 23263 iscnp2 23268 kgenf 23570 xkoopn 23618 xkouni 23628 dfac14 23647 xkoccn 23648 prdstopn 23657 xkoco1cn 23686 xkoco2cn 23687 xkococn 23689 xkoinjcn 23716 isfbas 23858 uzrest 23926 acufl 23946 alexsubALTlem2 24077 tsmsval2 24159 ustfn 24231 ustn0 24250 ishtpy 25023 vitali 25667 madefi 27968 sspval 30755 shex 31244 hsupval 31366 fpwrelmap 32747 fpwrelmapffs 32748 dmvlsiga 34093 eulerpartlem1 34332 eulerpartgbij 34337 eulerpartlemmf 34340 coinflippv 34448 ballotlemoex 34450 reprval 34587 kur14lem9 35182 satfvsuclem1 35327 mpstval 35503 mclsrcl 35529 mclsval 35531 heibor1lem 37769 heibor 37781 idlval 37973 psubspset 39701 paddfval 39754 pclfvalN 39846 polfvalN 39861 psubclsetN 39893 docafvalN 41079 djafvalN 41091 dicval 41133 dochfval 41307 djhfval 41354 islpolN 41440 mzpclval 42681 eldiophb 42713 rpnnen3 42989 dfac11 43019 rgspnval 43125 clsk1independent 44008 dmvolsal 46267 ovnval 46462 smfresal 46709 sprbisymrel 47373 grtri 47791 uspgrex 47873 uspgrbisymrelALT 47878 lincop 48137 setrec2fun 48784 elpglem3 48805 |
Copyright terms: Public domain | W3C validator |