| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwex | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| pwex.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| pwex | ⊢ 𝒫 𝐴 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | pwexg 5333 | . 2 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝒫 𝐴 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pow 5320 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: p0ex 5339 pp0ex 5341 ord3ex 5342 abexssex 7949 mptmpoopabbrd 8059 fnpm 8807 canth2 9094 dffi3 9382 r1sucg 9722 r1pwALT 9799 rankuni 9816 rankc2 9824 rankxpu 9829 rankmapu 9831 rankxplim 9832 r0weon 9965 aceq3lem 10073 dfac5lem4 10079 dfac5lem4OLD 10081 dfac2a 10083 dfac2b 10084 pwdju1 10144 ackbij2lem2 10192 ackbij2lem3 10193 fin23lem17 10291 domtriomlem 10395 axdc2lem 10401 axdc3lem 10403 axdclem2 10473 alephsucpw 10523 canthp1lem1 10605 gchac 10634 gruina 10771 npex 10939 nrex1 11017 pnfex 11227 mnfxr 11231 ixxex 13317 prdsvallem 17417 prdsds 17427 prdshom 17430 ismre 17551 fnmre 17552 fnmrc 17568 mrcfval 17569 mrisval 17591 wunfunc 17863 catcfuccl 18080 catcxpccl 18168 lubfval 18309 glbfval 18322 issubmgm 18629 issubm 18730 issubg 19058 cntzfval 19252 sylow1lem2 19529 lsmfval 19568 pj1fval 19624 issubrng 20456 issubrg 20480 rgspnval 20521 lssset 20839 lspfval 20879 islbs 20983 lbsext 21073 lbsexg 21074 sraval 21082 ocvfval 21575 cssval 21591 isobs 21629 islinds 21718 aspval 21782 istopon 22799 dmtopon 22810 fncld 22909 leordtval2 23099 cnpfval 23121 iscnp2 23126 kgenf 23428 xkoopn 23476 xkouni 23486 dfac14 23505 xkoccn 23506 prdstopn 23515 xkoco1cn 23544 xkoco2cn 23545 xkococn 23547 xkoinjcn 23574 isfbas 23716 uzrest 23784 acufl 23804 alexsubALTlem2 23935 tsmsval2 24017 ustfn 24089 ustn0 24108 ishtpy 24871 vitali 25514 madefi 27824 sspval 30652 shex 31141 hsupval 31263 fpwrelmap 32656 fpwrelmapffs 32657 dmvlsiga 34119 eulerpartlem1 34358 eulerpartgbij 34363 eulerpartlemmf 34366 coinflippv 34475 ballotlemoex 34477 reprval 34601 kur14lem9 35201 satfvsuclem1 35346 mpstval 35522 mclsrcl 35548 mclsval 35550 heibor1lem 37803 heibor 37815 idlval 38007 psubspset 39738 paddfval 39791 pclfvalN 39883 polfvalN 39898 psubclsetN 39930 docafvalN 41116 djafvalN 41128 dicval 41170 dochfval 41344 djhfval 41391 islpolN 41477 mzpclval 42713 eldiophb 42745 rpnnen3 43021 dfac11 43051 clsk1independent 44035 permaxpow 44999 dmvolsal 46344 ovnval 46539 smfresal 46786 sprbisymrel 47500 grtri 47939 uspgrex 48138 uspgrbisymrelALT 48143 lincop 48397 setrec2fun 49681 elpglem3 49702 |
| Copyright terms: Public domain | W3C validator |