MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpo1ubb Structured version   Visualization version   GIF version

Theorem chpo1ubb 26712
Description: The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 31-May-2016.)
Assertion
Ref Expression
chpo1ubb 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥)
Distinct variable group:   𝑥,𝑐

Proof of Theorem chpo1ubb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpssre 12817 . . . . 5 + ⊆ ℝ
21a1i 11 . . . 4 (⊤ → ℝ+ ⊆ ℝ)
3 1red 11056 . . . 4 (⊤ → 1 ∈ ℝ)
4 simpr 485 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
54rpred 12852 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
6 chpcl 26356 . . . . . 6 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
75, 6syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (ψ‘𝑥) ∈ ℝ)
87, 4rerpdivcld 12883 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
9 chpo1ub 26711 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
109a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
118, 10o1lo1d 15327 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ ≤𝑂(1))
12 chpcl 26356 . . . . . 6 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
1312ad2antrl 725 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (ψ‘𝑦) ∈ ℝ)
1413rehalfcld 12300 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) / 2) ∈ ℝ)
155adantr 481 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
16 chpeq0 26439 . . . . . . . . 9 (𝑥 ∈ ℝ → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
1715, 16syl 17 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
1817biimpar 478 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑥 < 2) → (ψ‘𝑥) = 0)
1918oveq1d 7332 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑥 < 2) → ((ψ‘𝑥) / 𝑥) = (0 / 𝑥))
204adantr 481 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
2120rpcnd 12854 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
2220rpne0d 12857 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ≠ 0)
2321, 22div0d 11830 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 / 𝑥) = 0)
2413ad2ant2r 744 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℝ)
25 2rp 12815 . . . . . . . . . 10 2 ∈ ℝ+
2625a1i 11 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ+)
27 simprll 776 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
28 chpge0 26358 . . . . . . . . . 10 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
2927, 28syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑦))
3024, 26, 29divge0d 12892 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((ψ‘𝑦) / 2))
3123, 30eqbrtrd 5109 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 / 𝑥) ≤ ((ψ‘𝑦) / 2))
3231adantr 481 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑥 < 2) → (0 / 𝑥) ≤ ((ψ‘𝑦) / 2))
3319, 32eqbrtrd 5109 . . . . 5 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑥 < 2) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) / 2))
347ad2antrr 723 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ)
3524adantr 481 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → (ψ‘𝑦) ∈ ℝ)
3625a1i 11 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 2 ∈ ℝ+)
3715adantr 481 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 𝑥 ∈ ℝ)
38 chpge0 26358 . . . . . . 7 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
3937, 38syl 17 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 0 ≤ (ψ‘𝑥))
4027adantr 481 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 𝑦 ∈ ℝ)
41 simprr 770 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
4215, 27, 41ltled 11203 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
4342adantr 481 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 𝑥𝑦)
44 chpwordi 26389 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
4537, 40, 43, 44syl3anc 1370 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ≤ (ψ‘𝑦))
46 simpr 485 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 2 ≤ 𝑥)
4734, 35, 36, 37, 39, 45, 46lediv12ad 12911 . . . . 5 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) / 2))
48 2re 12127 . . . . . 6 2 ∈ ℝ
4948a1i 11 . . . . 5 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
5033, 47, 15, 49ltlecasei 11163 . . . 4 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) / 2))
512, 3, 8, 11, 14, 50lo1bddrp 15313 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ≤ 𝑐)
5251mptru 1547 . 2 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ≤ 𝑐
53 simpr 485 . . . . . . 7 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5453rpred 12852 . . . . . 6 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
5554, 6syl 17 . . . . 5 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → (ψ‘𝑥) ∈ ℝ)
56 simpl 483 . . . . . 6 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑐 ∈ ℝ+)
5756rpred 12852 . . . . 5 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑐 ∈ ℝ)
5855, 57, 53ledivmul2d 12906 . . . 4 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → (((ψ‘𝑥) / 𝑥) ≤ 𝑐 ↔ (ψ‘𝑥) ≤ (𝑐 · 𝑥)))
5958ralbidva 3169 . . 3 (𝑐 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ≤ 𝑐 ↔ ∀𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥)))
6059rexbiia 3092 . 2 (∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥))
6152, 60mpbi 229 1 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wtru 1541  wcel 2105  wral 3062  wrex 3071  wss 3897   class class class wbr 5087  cmpt 5170  cfv 6466  (class class class)co 7317  cr 10950  0cc0 10951  1c1 10952   · cmul 10956   < clt 11089  cle 11090   / cdiv 11712  2c2 12108  +crp 12810  𝑂(1)co1 15274  ψcchp 26325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-inf2 9477  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029  ax-addf 11030  ax-mulf 11031
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-2o 8347  df-oadd 8350  df-er 8548  df-map 8667  df-pm 8668  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-fi 9247  df-sup 9278  df-inf 9279  df-oi 9346  df-dju 9737  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-xnn0 12386  df-z 12400  df-dec 12518  df-uz 12663  df-q 12769  df-rp 12811  df-xneg 12928  df-xadd 12929  df-xmul 12930  df-ioo 13163  df-ioc 13164  df-ico 13165  df-icc 13166  df-fz 13320  df-fzo 13463  df-fl 13592  df-mod 13670  df-seq 13802  df-exp 13863  df-fac 14068  df-bc 14097  df-hash 14125  df-shft 14857  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-limsup 15259  df-clim 15276  df-rlim 15277  df-o1 15278  df-lo1 15279  df-sum 15477  df-ef 15856  df-e 15857  df-sin 15858  df-cos 15859  df-pi 15861  df-dvds 16043  df-gcd 16281  df-prm 16454  df-pc 16615  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-starv 17054  df-sca 17055  df-vsca 17056  df-ip 17057  df-tset 17058  df-ple 17059  df-ds 17061  df-unif 17062  df-hom 17063  df-cco 17064  df-rest 17210  df-topn 17211  df-0g 17229  df-gsum 17230  df-topgen 17231  df-pt 17232  df-prds 17235  df-xrs 17290  df-qtop 17295  df-imas 17296  df-xps 17298  df-mre 17372  df-mrc 17373  df-acs 17375  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-submnd 18508  df-mulg 18777  df-cntz 18999  df-cmn 19463  df-psmet 20672  df-xmet 20673  df-met 20674  df-bl 20675  df-mopn 20676  df-fbas 20677  df-fg 20678  df-cnfld 20681  df-top 22126  df-topon 22143  df-topsp 22165  df-bases 22179  df-cld 22253  df-ntr 22254  df-cls 22255  df-nei 22332  df-lp 22370  df-perf 22371  df-cn 22461  df-cnp 22462  df-haus 22549  df-tx 22796  df-hmeo 22989  df-fil 23080  df-fm 23172  df-flim 23173  df-flf 23174  df-xms 23556  df-ms 23557  df-tms 23558  df-cncf 24124  df-limc 25113  df-dv 25114  df-log 25795  df-cxp 25796  df-cht 26329  df-vma 26330  df-chp 26331  df-ppi 26332
This theorem is referenced by:  pntrlog2bndlem3  26810
  Copyright terms: Public domain W3C validator