MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpo1ubb Structured version   Visualization version   GIF version

Theorem chpo1ubb 27540
Description: The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 31-May-2016.)
Assertion
Ref Expression
chpo1ubb 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥)
Distinct variable group:   𝑥,𝑐

Proof of Theorem chpo1ubb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpssre 13040 . . . . 5 + ⊆ ℝ
21a1i 11 . . . 4 (⊤ → ℝ+ ⊆ ℝ)
3 1red 11260 . . . 4 (⊤ → 1 ∈ ℝ)
4 simpr 484 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
54rpred 13075 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
6 chpcl 27182 . . . . . 6 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
75, 6syl 17 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (ψ‘𝑥) ∈ ℝ)
87, 4rerpdivcld 13106 . . . 4 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
9 chpo1ub 27539 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
109a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
118, 10o1lo1d 15572 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ ≤𝑂(1))
12 chpcl 27182 . . . . . 6 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
1312ad2antrl 728 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → (ψ‘𝑦) ∈ ℝ)
1413rehalfcld 12511 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) / 2) ∈ ℝ)
155adantr 480 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ)
16 chpeq0 27267 . . . . . . . . 9 (𝑥 ∈ ℝ → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
1715, 16syl 17 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
1817biimpar 477 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑥 < 2) → (ψ‘𝑥) = 0)
1918oveq1d 7446 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑥 < 2) → ((ψ‘𝑥) / 𝑥) = (0 / 𝑥))
204adantr 480 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℝ+)
2120rpcnd 13077 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ∈ ℂ)
2220rpne0d 13080 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 ≠ 0)
2321, 22div0d 12040 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 / 𝑥) = 0)
2413ad2ant2r 747 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (ψ‘𝑦) ∈ ℝ)
25 2rp 13037 . . . . . . . . . 10 2 ∈ ℝ+
2625a1i 11 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ+)
27 simprll 779 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑦 ∈ ℝ)
28 chpge0 27184 . . . . . . . . . 10 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
2927, 28syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ (ψ‘𝑦))
3024, 26, 29divge0d 13115 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 0 ≤ ((ψ‘𝑦) / 2))
3123, 30eqbrtrd 5170 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (0 / 𝑥) ≤ ((ψ‘𝑦) / 2))
3231adantr 480 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑥 < 2) → (0 / 𝑥) ≤ ((ψ‘𝑦) / 2))
3319, 32eqbrtrd 5170 . . . . 5 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 𝑥 < 2) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) / 2))
347ad2antrr 726 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ)
3524adantr 480 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → (ψ‘𝑦) ∈ ℝ)
3625a1i 11 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 2 ∈ ℝ+)
3715adantr 480 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 𝑥 ∈ ℝ)
38 chpge0 27184 . . . . . . 7 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
3937, 38syl 17 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 0 ≤ (ψ‘𝑥))
4027adantr 480 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 𝑦 ∈ ℝ)
41 simprr 773 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥 < 𝑦)
4215, 27, 41ltled 11407 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 𝑥𝑦)
4342adantr 480 . . . . . . 7 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 𝑥𝑦)
44 chpwordi 27215 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
4537, 40, 43, 44syl3anc 1370 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → (ψ‘𝑥) ≤ (ψ‘𝑦))
46 simpr 484 . . . . . 6 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → 2 ≤ 𝑥)
4734, 35, 36, 37, 39, 45, 46lediv12ad 13134 . . . . 5 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) ∧ 2 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) / 2))
48 2re 12338 . . . . . 6 2 ∈ ℝ
4948a1i 11 . . . . 5 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → 2 ∈ ℝ)
5033, 47, 15, 49ltlecasei 11367 . . . 4 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) / 2))
512, 3, 8, 11, 14, 50lo1bddrp 15558 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ≤ 𝑐)
5251mptru 1544 . 2 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ≤ 𝑐
53 simpr 484 . . . . . . 7 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
5453rpred 13075 . . . . . 6 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
5554, 6syl 17 . . . . 5 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → (ψ‘𝑥) ∈ ℝ)
56 simpl 482 . . . . . 6 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑐 ∈ ℝ+)
5756rpred 13075 . . . . 5 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → 𝑐 ∈ ℝ)
5855, 57, 53ledivmul2d 13129 . . . 4 ((𝑐 ∈ ℝ+𝑥 ∈ ℝ+) → (((ψ‘𝑥) / 𝑥) ≤ 𝑐 ↔ (ψ‘𝑥) ≤ (𝑐 · 𝑥)))
5958ralbidva 3174 . . 3 (𝑐 ∈ ℝ+ → (∀𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ≤ 𝑐 ↔ ∀𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥)))
6059rexbiia 3090 . 2 (∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ ((ψ‘𝑥) / 𝑥) ≤ 𝑐 ↔ ∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥))
6152, 60mpbi 230 1 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (ψ‘𝑥) ≤ (𝑐 · 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2106  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  2c2 12319  +crp 13032  𝑂(1)co1 15519  ψcchp 27151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-o1 15523  df-lo1 15524  df-sum 15720  df-ef 16100  df-e 16101  df-sin 16102  df-cos 16103  df-pi 16105  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614  df-cht 27155  df-vma 27156  df-chp 27157  df-ppi 27158
This theorem is referenced by:  pntrlog2bndlem3  27638
  Copyright terms: Public domain W3C validator