MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alcomiw Structured version   Visualization version   GIF version

Theorem alcomiw 2047
Description: Weak version of alcom 2158. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Dec-2023.)
Hypothesis
Ref Expression
alcomiw.1 (𝑦 = 𝑧 → (𝜑𝜓))
Assertion
Ref Expression
alcomiw (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Distinct variable groups:   𝑦,𝑧   𝑥,𝑦   𝜑,𝑧   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑧)

Proof of Theorem alcomiw
StepHypRef Expression
1 alcomiw.1 . . . . 5 (𝑦 = 𝑧 → (𝜑𝜓))
21cbvalvw 2040 . . . 4 (∀𝑦𝜑 ↔ ∀𝑧𝜓)
32biimpi 215 . . 3 (∀𝑦𝜑 → ∀𝑧𝜓)
43alimi 1815 . 2 (∀𝑥𝑦𝜑 → ∀𝑥𝑧𝜓)
5 ax-5 1914 . 2 (∀𝑥𝑧𝜓 → ∀𝑦𝑥𝑧𝜓)
61biimprd 247 . . . . 5 (𝑦 = 𝑧 → (𝜓𝜑))
76equcoms 2024 . . . 4 (𝑧 = 𝑦 → (𝜓𝜑))
87spimvw 2000 . . 3 (∀𝑧𝜓𝜑)
982alimi 1816 . 2 (∀𝑦𝑥𝑧𝜓 → ∀𝑦𝑥𝜑)
104, 5, 93syl 18 1 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  hbalw  2053  ax11w  2128  cgsex4g  3466  bj-ssblem2  34763
  Copyright terms: Public domain W3C validator