Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alcomiw | Structured version Visualization version GIF version |
Description: Weak version of alcom 2156. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Dec-2023.) |
Ref | Expression |
---|---|
alcomiw.1 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
alcomiw | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcomiw.1 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvalvw 2039 | . . . 4 ⊢ (∀𝑦𝜑 ↔ ∀𝑧𝜓) |
3 | 2 | biimpi 215 | . . 3 ⊢ (∀𝑦𝜑 → ∀𝑧𝜓) |
4 | 3 | alimi 1814 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑧𝜓) |
5 | ax-5 1913 | . 2 ⊢ (∀𝑥∀𝑧𝜓 → ∀𝑦∀𝑥∀𝑧𝜓) | |
6 | 1 | biimprd 247 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝜓 → 𝜑)) |
7 | 6 | equcoms 2023 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜓 → 𝜑)) |
8 | 7 | spimvw 1999 | . . 3 ⊢ (∀𝑧𝜓 → 𝜑) |
9 | 8 | 2alimi 1815 | . 2 ⊢ (∀𝑦∀𝑥∀𝑧𝜓 → ∀𝑦∀𝑥𝜑) |
10 | 4, 5, 9 | 3syl 18 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: hbalw 2052 ax11w 2126 cgsex4g 3476 bj-ssblem2 34836 |
Copyright terms: Public domain | W3C validator |