![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax12wdemo | Structured version Visualization version GIF version |
Description: Example of an application of ax12w 2130 that results in an instance of ax-12 2172 for a contrived formula with mixed free and bound variables, (𝑥 ∈ 𝑦 ∧ ∀𝑥𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧𝑦 ∈ 𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 2040 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.) |
Ref | Expression |
---|---|
ax12wdemo | ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 2114 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
2 | elequ2 2122 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) | |
3 | 2 | cbvalvw 2040 | . . . 4 ⊢ (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤)) |
5 | elequ1 2114 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝑦 ∈ 𝑥 ↔ 𝑣 ∈ 𝑥)) | |
6 | 5 | albidv 1924 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑥)) |
7 | 6 | cbvalvw 2040 | . . . 4 ⊢ (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥) |
8 | elequ2 2122 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦)) | |
9 | 8 | albidv 1924 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑦)) |
10 | 9 | albidv 1924 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) |
11 | 7, 10 | bitrid 283 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) |
12 | 1, 4, 11 | 3anbi123d 1437 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ∧ ∀𝑤 𝑧 ∈ 𝑤 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑦))) |
13 | elequ2 2122 | . . 3 ⊢ (𝑦 = 𝑣 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑣)) | |
14 | 7 | a1i 11 | . . 3 ⊢ (𝑦 = 𝑣 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥)) |
15 | 13, 14 | 3anbi13d 1439 | . 2 ⊢ (𝑦 = 𝑣 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑣 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑥))) |
16 | 12, 15 | ax12w 2130 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-ex 1783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |