MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12wdemo Structured version   Visualization version   GIF version

Theorem ax12wdemo 2135
Description: Example of an application of ax12w 2133 that results in an instance of ax-12 2175 for a contrived formula with mixed free and bound variables, (𝑥𝑦 ∧ ∀𝑥𝑧𝑥 ∧ ∀𝑦𝑧𝑦𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 2043 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.)
Assertion
Ref Expression
ax12wdemo (𝑥 = 𝑦 → (∀𝑦(𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥))))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem ax12wdemo
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 2117 . . 3 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
2 elequ2 2125 . . . . 5 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
32cbvalvw 2043 . . . 4 (∀𝑥 𝑧𝑥 ↔ ∀𝑤 𝑧𝑤)
43a1i 11 . . 3 (𝑥 = 𝑦 → (∀𝑥 𝑧𝑥 ↔ ∀𝑤 𝑧𝑤))
5 elequ1 2117 . . . . . 6 (𝑦 = 𝑣 → (𝑦𝑥𝑣𝑥))
65albidv 1927 . . . . 5 (𝑦 = 𝑣 → (∀𝑧 𝑦𝑥 ↔ ∀𝑧 𝑣𝑥))
76cbvalvw 2043 . . . 4 (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑥)
8 elequ2 2125 . . . . . 6 (𝑥 = 𝑦 → (𝑣𝑥𝑣𝑦))
98albidv 1927 . . . . 5 (𝑥 = 𝑦 → (∀𝑧 𝑣𝑥 ↔ ∀𝑧 𝑣𝑦))
109albidv 1927 . . . 4 (𝑥 = 𝑦 → (∀𝑣𝑧 𝑣𝑥 ↔ ∀𝑣𝑧 𝑣𝑦))
117, 10bitrid 282 . . 3 (𝑥 = 𝑦 → (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑦))
121, 4, 113anbi123d 1435 . 2 (𝑥 = 𝑦 → ((𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) ↔ (𝑦𝑦 ∧ ∀𝑤 𝑧𝑤 ∧ ∀𝑣𝑧 𝑣𝑦)))
13 elequ2 2125 . . 3 (𝑦 = 𝑣 → (𝑥𝑦𝑥𝑣))
147a1i 11 . . 3 (𝑦 = 𝑣 → (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑥))
1513, 143anbi13d 1437 . 2 (𝑦 = 𝑣 → ((𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) ↔ (𝑥𝑣 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑣𝑧 𝑣𝑥)))
1612, 15ax12w 2133 1 (𝑥 = 𝑦 → (∀𝑦(𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ex 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator