Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax12wdemo | Structured version Visualization version GIF version |
Description: Example of an application of ax12w 2133 that results in an instance of ax-12 2175 for a contrived formula with mixed free and bound variables, (𝑥 ∈ 𝑦 ∧ ∀𝑥𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧𝑦 ∈ 𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 2043 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.) |
Ref | Expression |
---|---|
ax12wdemo | ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 2117 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
2 | elequ2 2125 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) | |
3 | 2 | cbvalvw 2043 | . . . 4 ⊢ (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤)) |
5 | elequ1 2117 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝑦 ∈ 𝑥 ↔ 𝑣 ∈ 𝑥)) | |
6 | 5 | albidv 1927 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑥)) |
7 | 6 | cbvalvw 2043 | . . . 4 ⊢ (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥) |
8 | elequ2 2125 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦)) | |
9 | 8 | albidv 1927 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑦)) |
10 | 9 | albidv 1927 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) |
11 | 7, 10 | bitrid 282 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) |
12 | 1, 4, 11 | 3anbi123d 1435 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ∧ ∀𝑤 𝑧 ∈ 𝑤 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑦))) |
13 | elequ2 2125 | . . 3 ⊢ (𝑦 = 𝑣 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑣)) | |
14 | 7 | a1i 11 | . . 3 ⊢ (𝑦 = 𝑣 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥)) |
15 | 13, 14 | 3anbi13d 1437 | . 2 ⊢ (𝑦 = 𝑣 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑣 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑥))) |
16 | 12, 15 | ax12w 2133 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-ex 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |