|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ax12wdemo | Structured version Visualization version GIF version | ||
| Description: Example of an application of ax12w 2132 that results in an instance of ax-12 2176 for a contrived formula with mixed free and bound variables, (𝑥 ∈ 𝑦 ∧ ∀𝑥𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧𝑦 ∈ 𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 2034 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.) | 
| Ref | Expression | 
|---|---|
| ax12wdemo | ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elequ1 2114 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
| 2 | elequ2 2122 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) | |
| 3 | 2 | cbvalvw 2034 | . . . 4 ⊢ (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤) | 
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤)) | 
| 5 | elequ1 2114 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝑦 ∈ 𝑥 ↔ 𝑣 ∈ 𝑥)) | |
| 6 | 5 | albidv 1919 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑥)) | 
| 7 | 6 | cbvalvw 2034 | . . . 4 ⊢ (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥) | 
| 8 | elequ2 2122 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦)) | |
| 9 | 8 | albidv 1919 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑦)) | 
| 10 | 9 | albidv 1919 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) | 
| 11 | 7, 10 | bitrid 283 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) | 
| 12 | 1, 4, 11 | 3anbi123d 1437 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ∧ ∀𝑤 𝑧 ∈ 𝑤 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑦))) | 
| 13 | elequ2 2122 | . . 3 ⊢ (𝑦 = 𝑣 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑣)) | |
| 14 | 7 | a1i 11 | . . 3 ⊢ (𝑦 = 𝑣 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥)) | 
| 15 | 13, 14 | 3anbi13d 1439 | . 2 ⊢ (𝑦 = 𝑣 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑣 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑥))) | 
| 16 | 12, 15 | ax12w 2132 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1779 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |