![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax12wdemo | Structured version Visualization version GIF version |
Description: Example of an application of ax12w 2127 that results in an instance of ax-12 2169 for a contrived formula with mixed free and bound variables, (𝑥 ∈ 𝑦 ∧ ∀𝑥𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧𝑦 ∈ 𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 2037 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.) |
Ref | Expression |
---|---|
ax12wdemo | ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 2111 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
2 | elequ2 2119 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) | |
3 | 2 | cbvalvw 2037 | . . . 4 ⊢ (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤)) |
5 | elequ1 2111 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝑦 ∈ 𝑥 ↔ 𝑣 ∈ 𝑥)) | |
6 | 5 | albidv 1921 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑥)) |
7 | 6 | cbvalvw 2037 | . . . 4 ⊢ (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥) |
8 | elequ2 2119 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦)) | |
9 | 8 | albidv 1921 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑦)) |
10 | 9 | albidv 1921 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) |
11 | 7, 10 | bitrid 282 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) |
12 | 1, 4, 11 | 3anbi123d 1434 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ∧ ∀𝑤 𝑧 ∈ 𝑤 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑦))) |
13 | elequ2 2119 | . . 3 ⊢ (𝑦 = 𝑣 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑣)) | |
14 | 7 | a1i 11 | . . 3 ⊢ (𝑦 = 𝑣 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥)) |
15 | 13, 14 | 3anbi13d 1436 | . 2 ⊢ (𝑦 = 𝑣 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑣 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑥))) |
16 | 12, 15 | ax12w 2127 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 df-ex 1780 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |