![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax12wdemo | Structured version Visualization version GIF version |
Description: Example of an application of ax12w 2133 that results in an instance of ax-12 2178 for a contrived formula with mixed free and bound variables, (𝑥 ∈ 𝑦 ∧ ∀𝑥𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧𝑦 ∈ 𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 2035 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.) |
Ref | Expression |
---|---|
ax12wdemo | ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elequ1 2115 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦)) | |
2 | elequ2 2123 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑤)) | |
3 | 2 | cbvalvw 2035 | . . . 4 ⊢ (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑥 𝑧 ∈ 𝑥 ↔ ∀𝑤 𝑧 ∈ 𝑤)) |
5 | elequ1 2115 | . . . . . 6 ⊢ (𝑦 = 𝑣 → (𝑦 ∈ 𝑥 ↔ 𝑣 ∈ 𝑥)) | |
6 | 5 | albidv 1919 | . . . . 5 ⊢ (𝑦 = 𝑣 → (∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑥)) |
7 | 6 | cbvalvw 2035 | . . . 4 ⊢ (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥) |
8 | elequ2 2123 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑣 ∈ 𝑥 ↔ 𝑣 ∈ 𝑦)) | |
9 | 8 | albidv 1919 | . . . . 5 ⊢ (𝑥 = 𝑦 → (∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑧 𝑣 ∈ 𝑦)) |
10 | 9 | albidv 1919 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑣∀𝑧 𝑣 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) |
11 | 7, 10 | bitrid 283 | . . 3 ⊢ (𝑥 = 𝑦 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑦)) |
12 | 1, 4, 11 | 3anbi123d 1436 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑦 ∈ 𝑦 ∧ ∀𝑤 𝑧 ∈ 𝑤 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑦))) |
13 | elequ2 2123 | . . 3 ⊢ (𝑦 = 𝑣 → (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑣)) | |
14 | 7 | a1i 11 | . . 3 ⊢ (𝑦 = 𝑣 → (∀𝑦∀𝑧 𝑦 ∈ 𝑥 ↔ ∀𝑣∀𝑧 𝑣 ∈ 𝑥)) |
15 | 13, 14 | 3anbi13d 1438 | . 2 ⊢ (𝑦 = 𝑣 → ((𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑣 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑣∀𝑧 𝑣 ∈ 𝑥))) |
16 | 12, 15 | ax12w 2133 | 1 ⊢ (𝑥 = 𝑦 → (∀𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥 ∈ 𝑦 ∧ ∀𝑥 𝑧 ∈ 𝑥 ∧ ∀𝑦∀𝑧 𝑦 ∈ 𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1778 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |