MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax12wdemo Structured version   Visualization version   GIF version

Theorem ax12wdemo 2124
Description: Example of an application of ax12w 2122 that results in an instance of ax-12 2164 for a contrived formula with mixed free and bound variables, (𝑥𝑦 ∧ ∀𝑥𝑧𝑥 ∧ ∀𝑦𝑧𝑦𝑥), in place of 𝜑. The proof illustrates bound variable renaming with cbvalvw 2032 to obtain fresh variables to avoid distinct variable clashes. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 14-Apr-2017.)
Assertion
Ref Expression
ax12wdemo (𝑥 = 𝑦 → (∀𝑦(𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥))))
Distinct variable group:   𝑥,𝑦,𝑧

Proof of Theorem ax12wdemo
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 2106 . . 3 (𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
2 elequ2 2114 . . . . 5 (𝑥 = 𝑤 → (𝑧𝑥𝑧𝑤))
32cbvalvw 2032 . . . 4 (∀𝑥 𝑧𝑥 ↔ ∀𝑤 𝑧𝑤)
43a1i 11 . . 3 (𝑥 = 𝑦 → (∀𝑥 𝑧𝑥 ↔ ∀𝑤 𝑧𝑤))
5 elequ1 2106 . . . . . 6 (𝑦 = 𝑣 → (𝑦𝑥𝑣𝑥))
65albidv 1916 . . . . 5 (𝑦 = 𝑣 → (∀𝑧 𝑦𝑥 ↔ ∀𝑧 𝑣𝑥))
76cbvalvw 2032 . . . 4 (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑥)
8 elequ2 2114 . . . . . 6 (𝑥 = 𝑦 → (𝑣𝑥𝑣𝑦))
98albidv 1916 . . . . 5 (𝑥 = 𝑦 → (∀𝑧 𝑣𝑥 ↔ ∀𝑧 𝑣𝑦))
109albidv 1916 . . . 4 (𝑥 = 𝑦 → (∀𝑣𝑧 𝑣𝑥 ↔ ∀𝑣𝑧 𝑣𝑦))
117, 10bitrid 283 . . 3 (𝑥 = 𝑦 → (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑦))
121, 4, 113anbi123d 1433 . 2 (𝑥 = 𝑦 → ((𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) ↔ (𝑦𝑦 ∧ ∀𝑤 𝑧𝑤 ∧ ∀𝑣𝑧 𝑣𝑦)))
13 elequ2 2114 . . 3 (𝑦 = 𝑣 → (𝑥𝑦𝑥𝑣))
147a1i 11 . . 3 (𝑦 = 𝑣 → (∀𝑦𝑧 𝑦𝑥 ↔ ∀𝑣𝑧 𝑣𝑥))
1513, 143anbi13d 1435 . 2 (𝑦 = 𝑣 → ((𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) ↔ (𝑥𝑣 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑣𝑧 𝑣𝑥)))
1612, 15ax12w 2122 1 (𝑥 = 𝑦 → (∀𝑦(𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥) → ∀𝑥(𝑥 = 𝑦 → (𝑥𝑦 ∧ ∀𝑥 𝑧𝑥 ∧ ∀𝑦𝑧 𝑦𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085  wal 1532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-ex 1775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator