MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spw Structured version   Visualization version   GIF version

Theorem spw 2143
Description: Weak version of the specialization scheme sp 2226. Lemma 9 of [KalishMontague] p. 87. While it appears that sp 2226 in its general form does not follow from Tarski's FOL axiom schemes, from this theorem we can prove any instance of sp 2226 having mutually distinct setvar variables and no wff metavariables (see ax12wdemo 2188 for an example of the procedure to eliminate the hypothesis). Other approximations of sp 2226 are spfw 2142 (minimal distinct variable requirements), spnfw 2106 (when 𝑥 is not free in ¬ 𝜑), spvw 2088 (when 𝑥 does not appear in 𝜑), sptruw 1907 (when 𝜑 is true), and spfalw 2107 (when 𝜑 is false). (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 27-Feb-2018.)
Hypothesis
Ref Expression
spw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spw (∀𝑥𝜑𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem spw
StepHypRef Expression
1 ax-5 2011 . 2 𝜓 → ∀𝑥 ¬ 𝜓)
2 ax-5 2011 . 2 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
3 ax-5 2011 . 2 𝜑 → ∀𝑦 ¬ 𝜑)
4 spw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 3, 4spfw 2142 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wal 1656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1881
This theorem is referenced by:  hba1w  2151  spaev  2154  ax12w  2186  bj-ssblem1  33168  bj-ax12w  33201
  Copyright terms: Public domain W3C validator