![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spw | Structured version Visualization version GIF version |
Description: Weak version of the specialization scheme sp 2184. Lemma 9 of [KalishMontague] p. 87. While it appears that sp 2184 in its general form does not follow from Tarski's FOL axiom schemes, from this theorem we can prove any instance of sp 2184 having mutually distinct setvar variables and no wff metavariables (see ax12wdemo 2135 for an example of the procedure to eliminate the hypothesis). Other approximations of sp 2184 are spfw 2032 (minimal distinct variable requirements), spnfw 1979 (when 𝑥 is not free in ¬ 𝜑), spvw 1980 (when 𝑥 does not appear in 𝜑), sptruw 1804 (when 𝜑 is true), spfalw 1997 (when 𝜑 is false), and spvv 1996 (where 𝜑 is changed into 𝜓). (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 27-Feb-2018.) |
Ref | Expression |
---|---|
spw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spw | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1909 | . 2 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
2 | ax-5 1909 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
3 | ax-5 1909 | . 2 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
4 | spw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | spfw 2032 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: hba1w 2047 19.8aw 2050 exexw 2051 spaev 2052 ax12w 2133 rspw 3242 reldisj 4476 ralidmw 4531 dtruALT2 5388 dtruOLD 5461 bj-ssblem1 36620 bj-ax12w 36643 eu6w 42631 |
Copyright terms: Public domain | W3C validator |