MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spw Structured version   Visualization version   GIF version

Theorem spw 2035
Description: Weak version of the specialization scheme sp 2186. Lemma 9 of [KalishMontague] p. 87. While it appears that sp 2186 in its general form does not follow from Tarski's FOL axiom schemes, from this theorem we can prove any instance of sp 2186 having mutually distinct setvar variables and no wff metavariables (see ax12wdemo 2138 for an example of the procedure to eliminate the hypothesis). Other approximations of sp 2186 are spfw 2034 (minimal distinct variable requirements), spnfw 1980 (when 𝑥 is not free in ¬ 𝜑), spvw 1982 (when 𝑥 does not appear in 𝜑), sptruw 1807 (when 𝜑 is true), spfalw 1981 (when 𝜑 is false), and spvv 1989 (where 𝜑 is changed into 𝜓). (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 27-Feb-2018.)
Hypothesis
Ref Expression
spw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spw (∀𝑥𝜑𝜑)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem spw
StepHypRef Expression
1 ax-5 1911 . 2 𝜓 → ∀𝑥 ¬ 𝜓)
2 ax-5 1911 . 2 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
3 ax-5 1911 . 2 𝜑 → ∀𝑦 ¬ 𝜑)
4 spw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 3, 4spfw 2034 1 (∀𝑥𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  hba1w  2050  19.8aw  2053  exexw  2054  spaev  2055  ax12w  2136  rspw  3209  reldisj  4400  ralidmw  4455  dtruALT2  5306  bj-ssblem1  36698  bj-ax12w  36721  eu6w  42779
  Copyright terms: Public domain W3C validator