![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version |
Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2065. This theorem shows that our obsolete axiom ax-c5 38864 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2174. It is thought the best we can do using only Tarski's axioms is spw 2030. Also see spvw 1977 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1822 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.8a 2178 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1534 ∃wex 1775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-12 2174 |
This theorem depends on definitions: df-bi 207 df-ex 1776 |
This theorem is referenced by: spi 2181 sps 2182 2sp 2183 spsd 2184 19.21bi 2186 19.3t 2198 19.3 2199 19.9d 2200 sb4av 2241 sbequ2 2246 axc16gb 2259 axc7 2315 axc4 2319 19.12 2325 exsb 2359 ax12 2425 ax12b 2426 ax13ALT 2427 hbae 2433 sb4a 2482 dfsb2 2495 nfsb4t 2501 mo3 2561 mopick 2622 axi4 2696 axi5r 2697 nfcrALT 2893 rsp 3244 ceqex 3651 elrab3t 3693 abidnf 3710 mob2 3723 sbcnestgfw 4426 sbcnestgf 4431 ralidm 4517 mpteq12f 5235 axrep2 5287 axnulALT 5309 eusv1 5396 alxfr 5412 axprlem4OLD 5434 axprlem5OLD 5435 iota1 6539 dffv2 7003 fiint 9363 fiintOLD 9364 isf32lem9 10398 nd3 10626 axrepnd 10631 axpowndlem2 10635 axpowndlem3 10636 axacndlem4 10647 trclfvcotr 15044 relexpindlem 15098 fiinopn 22922 ex-natded9.26-2 30448 bnj1294 34809 bnj570 34897 bnj953 34931 bnj1204 35004 bnj1388 35025 in-ax8 36206 ss-ax8 36207 bj-ssbid2ALT 36645 bj-sb 36669 bj-spst 36671 bj-19.21bit 36672 bj-substax12 36703 bj-hbaeb2 36800 bj-hbnaeb 36802 bj-sbsb 36819 bj-nfcsym 36881 exlimim 37324 exellim 37326 difunieq 37356 wl-aleq 37515 wl-equsal1i 37524 wl-sb8t 37532 wl-2spsbbi 37545 wl-lem-exsb 37546 wl-lem-moexsb 37548 wl-mo2tf 37551 wl-eutf 37553 wl-mo2t 37555 wl-mo3t 37556 wl-sb8eut 37558 wl-ax11-lem2 37566 mopickr 38344 prtlem14 38855 axc5 38874 setindtr 43012 unielss 43206 ismnushort 44296 pm11.57 44384 pm11.59 44386 axc5c4c711toc7 44399 axc5c4c711to11 44400 axc11next 44401 eubiOLD 44431 ssralv2 44528 19.41rg 44547 hbexg 44553 ax6e2ndeq 44556 ssralv2VD 44863 19.41rgVD 44899 hbimpgVD 44901 hbexgVD 44903 ax6e2eqVD 44904 ax6e2ndeqVD 44906 vk15.4jVD 44911 ax6e2ndeqALT 44928 rexsb 47048 ichnfimlem 47387 setrec1lem4 48920 |
Copyright terms: Public domain | W3C validator |