| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version | ||
| Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2069. This theorem shows that our obsolete axiom ax-c5 38849 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2178. It is thought the best we can do using only Tarski's axioms is spw 2034. Also see spvw 1981 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| sp | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1826 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 19.8a 2182 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
| 3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: spi 2185 sps 2186 2sp 2187 spsd 2188 19.21bi 2190 19.3t 2202 19.3 2203 19.9d 2204 sb4av 2245 sbequ2 2250 axc16gb 2263 axc7 2316 axc4 2320 19.12 2326 exsb 2357 ax12 2421 ax12b 2422 ax13ALT 2423 hbae 2429 sb4a 2478 dfsb2 2491 nfsb4t 2497 mo3 2557 mopick 2618 axi4 2692 axi5r 2693 nfcrALT 2882 rsp 3223 ceqex 3615 elrab3t 3655 abidnf 3670 mob2 3683 sbcnestgfw 4380 sbcnestgf 4385 ralidm 4471 mpteq12f 5187 axrep2 5232 axnulALT 5254 eusv1 5341 alxfr 5357 axprlem4OLD 5379 axprlem5OLD 5380 iota1 6476 dffv2 6938 fiint 9253 fiintOLD 9254 isf32lem9 10290 nd3 10518 axrepnd 10523 axpowndlem2 10527 axpowndlem3 10528 axacndlem4 10539 trclfvcotr 14951 relexpindlem 15005 fiinopn 22764 ex-natded9.26-2 30322 bnj1294 34780 bnj570 34868 bnj953 34902 bnj1204 34975 bnj1388 34996 in-ax8 36185 ss-ax8 36186 bj-ssbid2ALT 36624 bj-sb 36648 bj-spst 36650 bj-19.21bit 36651 bj-substax12 36682 bj-hbaeb2 36779 bj-hbnaeb 36781 bj-sbsb 36798 bj-nfcsym 36860 exlimim 37303 exellim 37305 difunieq 37335 wl-aleq 37496 wl-equsal1i 37505 wl-sb8t 37513 wl-2spsbbi 37526 wl-lem-exsb 37527 wl-lem-moexsb 37529 wl-mo2tf 37532 wl-eutf 37534 wl-mo2t 37536 wl-mo3t 37537 wl-sb8eut 37539 wl-ax11-lem2 37547 mopickr 38318 prtlem14 38840 axc5 38859 setindtr 42986 unielss 43180 ismnushort 44263 pm11.57 44351 pm11.59 44353 axc5c4c711toc7 44366 axc5c4c711to11 44367 axc11next 44368 eubiOLD 44398 ssralv2 44494 19.41rg 44513 hbexg 44519 ax6e2ndeq 44522 ssralv2VD 44828 19.41rgVD 44864 hbimpgVD 44866 hbexgVD 44868 ax6e2eqVD 44869 ax6e2ndeqVD 44871 vk15.4jVD 44876 ax6e2ndeqALT 44893 rexsb 47073 ichnfimlem 47437 setrec1lem4 49652 |
| Copyright terms: Public domain | W3C validator |