| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version | ||
| Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2069. This theorem shows that our obsolete axiom ax-c5 38881 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2178. It is thought the best we can do using only Tarski's axioms is spw 2034. Also see spvw 1981 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| sp | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1826 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 19.8a 2182 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
| 3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: spi 2185 sps 2186 2sp 2187 spsd 2188 19.21bi 2190 19.3t 2202 19.3 2203 19.9d 2204 sb4av 2245 sbequ2 2250 axc16gb 2263 axc7 2316 axc4 2320 19.12 2326 exsb 2357 ax12 2421 ax12b 2422 ax13ALT 2423 hbae 2429 sb4a 2478 dfsb2 2491 nfsb4t 2497 mo3 2557 mopick 2618 axi4 2692 axi5r 2693 nfcrALT 2882 rsp 3217 ceqex 3609 elrab3t 3649 abidnf 3664 mob2 3677 sbcnestgfw 4374 sbcnestgf 4379 ralidm 4465 mpteq12f 5180 axrep2 5224 axnulALT 5246 eusv1 5333 alxfr 5349 axprlem4OLD 5371 axprlem5OLD 5372 iota1 6465 dffv2 6922 fiint 9235 fiintOLD 9236 isf32lem9 10274 nd3 10502 axrepnd 10507 axpowndlem2 10511 axpowndlem3 10512 axacndlem4 10523 trclfvcotr 14935 relexpindlem 14989 fiinopn 22805 ex-natded9.26-2 30383 bnj1294 34803 bnj570 34891 bnj953 34925 bnj1204 34998 bnj1388 35019 in-ax8 36217 ss-ax8 36218 bj-ssbid2ALT 36656 bj-sb 36680 bj-spst 36682 bj-19.21bit 36683 bj-substax12 36714 bj-hbaeb2 36811 bj-hbnaeb 36813 bj-sbsb 36830 bj-nfcsym 36892 exlimim 37335 exellim 37337 difunieq 37367 wl-aleq 37528 wl-equsal1i 37537 wl-sb8t 37545 wl-2spsbbi 37558 wl-lem-exsb 37559 wl-lem-moexsb 37561 wl-mo2tf 37564 wl-eutf 37566 wl-mo2t 37568 wl-mo3t 37569 wl-sb8eut 37571 wl-ax11-lem2 37579 mopickr 38350 prtlem14 38872 axc5 38891 setindtr 43017 unielss 43211 ismnushort 44294 pm11.57 44382 pm11.59 44384 axc5c4c711toc7 44397 axc5c4c711to11 44398 axc11next 44399 eubiOLD 44429 ssralv2 44525 19.41rg 44544 hbexg 44550 ax6e2ndeq 44553 ssralv2VD 44859 19.41rgVD 44895 hbimpgVD 44897 hbexgVD 44899 ax6e2eqVD 44900 ax6e2ndeqVD 44902 vk15.4jVD 44907 ax6e2ndeqALT 44924 rexsb 47103 ichnfimlem 47467 setrec1lem4 49695 |
| Copyright terms: Public domain | W3C validator |