Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version |
Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2072. This theorem shows that our obsolete axiom ax-c5 36824 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2173. It is thought the best we can do using only Tarski's axioms is spw 2038. Also see spvw 1985 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1829 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.8a 2176 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: spi 2179 sps 2180 2sp 2181 spsd 2182 19.21bi 2184 19.3t 2197 19.3 2198 19.9d 2199 sb4av 2239 sbequ2 2244 sbequ2OLD 2245 axc16gb 2257 axc7 2315 axc4 2319 19.12 2325 exsb 2357 ax12 2423 ax12b 2424 ax13ALT 2425 hbae 2431 sb4a 2484 dfsb2 2497 nfsb4t 2503 mo3 2564 mopick 2627 axi4 2700 axi5r 2701 nfcrALT 2892 nfcriOLDOLD 2897 nfabdwOLD 2930 rsp 3129 ceqex 3574 elrab3t 3616 abidnf 3633 mob2 3645 sbcbi2OLD 3775 sbcnestgfw 4349 sbcnestgf 4354 ralidm 4439 mpteq12f 5158 axrep2 5208 axnulALT 5223 eusv1 5309 alxfr 5325 axprlem4 5344 axprlem5 5345 iota1 6395 dffv2 6845 fiint 9021 frmin 9438 isf32lem9 10048 nd3 10276 axrepnd 10281 axpowndlem2 10285 axpowndlem3 10286 axacndlem4 10297 trclfvcotr 14648 relexpindlem 14702 fiinopn 21958 ex-natded9.26-2 28685 bnj1294 32697 bnj570 32785 bnj953 32819 bnj1204 32892 bnj1388 32913 bj-ssbid2ALT 34771 bj-sb 34796 bj-spst 34798 bj-19.21bit 34799 bj-substax12 34830 bj-dtru 34926 bj-hbaeb2 34928 bj-hbnaeb 34930 bj-sbsb 34947 bj-nfcsym 35011 exlimim 35440 exellim 35442 difunieq 35472 wl-aleq 35621 wl-equsal1i 35629 wl-sb8t 35634 wl-2spsbbi 35647 wl-lem-exsb 35648 wl-lem-moexsb 35650 wl-mo2tf 35653 wl-eutf 35655 wl-mo2t 35657 wl-mo3t 35658 wl-sb8eut 35659 wl-ax11-lem2 35664 prtlem14 36815 axc5 36834 setindtr 40762 ismnushort 41808 pm11.57 41896 pm11.59 41898 axc5c4c711toc7 41911 axc5c4c711to11 41912 axc11next 41913 eubiOLD 41943 ssralv2 42040 19.41rg 42059 hbexg 42065 ax6e2ndeq 42068 ssralv2VD 42375 19.41rgVD 42411 hbimpgVD 42413 hbexgVD 42415 ax6e2eqVD 42416 ax6e2ndeqVD 42418 vk15.4jVD 42423 ax6e2ndeqALT 42440 rexsb 44478 ichnfimlem 44803 setrec1lem4 46282 |
Copyright terms: Public domain | W3C validator |