![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version |
Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2071. This theorem shows that our obsolete axiom ax-c5 37741 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2171. It is thought the best we can do using only Tarski's axioms is spw 2037. Also see spvw 1984 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1828 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.8a 2174 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1782 |
This theorem is referenced by: spi 2177 sps 2178 2sp 2179 spsd 2180 19.21bi 2182 19.3t 2194 19.3 2195 19.9d 2196 sb4av 2236 sbequ2 2241 axc16gb 2253 axc7 2310 axc4 2314 19.12 2320 exsb 2355 ax12 2422 ax12b 2423 ax13ALT 2424 hbae 2430 sb4a 2479 dfsb2 2492 nfsb4t 2498 mo3 2558 mopick 2621 axi4 2694 axi5r 2695 nfcrALT 2889 nfcriOLDOLD 2894 nfabdwOLD 2927 rsp 3244 ceqex 3639 elrab3t 3681 abidnf 3697 mob2 3710 sbcbi2OLD 3839 sbcnestgfw 4417 sbcnestgf 4422 ralidm 4510 mpteq12f 5235 axrep2 5287 axnulALT 5303 eusv1 5388 alxfr 5404 axprlem4 5423 axprlem5 5424 iota1 6517 dffv2 6983 fiint 9320 isf32lem9 10352 nd3 10580 axrepnd 10585 axpowndlem2 10589 axpowndlem3 10590 axacndlem4 10601 trclfvcotr 14952 relexpindlem 15006 fiinopn 22394 ex-natded9.26-2 29662 bnj1294 33816 bnj570 33904 bnj953 33938 bnj1204 34011 bnj1388 34032 bj-ssbid2ALT 35528 bj-sb 35553 bj-spst 35555 bj-19.21bit 35556 bj-substax12 35587 bj-hbaeb2 35684 bj-hbnaeb 35686 bj-sbsb 35703 bj-nfcsym 35767 exlimim 36211 exellim 36213 difunieq 36243 wl-aleq 36392 wl-equsal1i 36400 wl-sb8t 36405 wl-2spsbbi 36418 wl-lem-exsb 36419 wl-lem-moexsb 36421 wl-mo2tf 36424 wl-eutf 36426 wl-mo2t 36428 wl-mo3t 36429 wl-sb8eut 36430 wl-ax11-lem2 36436 mopickr 37220 prtlem14 37732 axc5 37751 setindtr 41748 unielss 41952 ismnushort 43045 pm11.57 43133 pm11.59 43135 axc5c4c711toc7 43148 axc5c4c711to11 43149 axc11next 43150 eubiOLD 43180 ssralv2 43277 19.41rg 43296 hbexg 43302 ax6e2ndeq 43305 ssralv2VD 43612 19.41rgVD 43648 hbimpgVD 43650 hbexgVD 43652 ax6e2eqVD 43653 ax6e2ndeqVD 43655 vk15.4jVD 43660 ax6e2ndeqALT 43677 rexsb 45793 ichnfimlem 46117 setrec1lem4 47688 |
Copyright terms: Public domain | W3C validator |