![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version |
Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2072. This theorem shows that our obsolete axiom ax-c5 37753 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2172. It is thought the best we can do using only Tarski's axioms is spw 2038. Also see spvw 1985 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1829 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.8a 2175 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: spi 2178 sps 2179 2sp 2180 spsd 2181 19.21bi 2183 19.3t 2195 19.3 2196 19.9d 2197 sb4av 2237 sbequ2 2242 axc16gb 2254 axc7 2311 axc4 2315 19.12 2321 exsb 2356 ax12 2423 ax12b 2424 ax13ALT 2425 hbae 2431 sb4a 2480 dfsb2 2493 nfsb4t 2499 mo3 2559 mopick 2622 axi4 2695 axi5r 2696 nfcrALT 2890 nfcriOLDOLD 2895 nfabdwOLD 2928 rsp 3245 ceqex 3641 elrab3t 3683 abidnf 3699 mob2 3712 sbcbi2OLD 3841 sbcnestgfw 4419 sbcnestgf 4424 ralidm 4512 mpteq12f 5237 axrep2 5289 axnulALT 5305 eusv1 5390 alxfr 5406 axprlem4 5425 axprlem5 5426 iota1 6521 dffv2 6987 fiint 9324 isf32lem9 10356 nd3 10584 axrepnd 10589 axpowndlem2 10593 axpowndlem3 10594 axacndlem4 10605 trclfvcotr 14956 relexpindlem 15010 fiinopn 22403 ex-natded9.26-2 29673 bnj1294 33828 bnj570 33916 bnj953 33950 bnj1204 34023 bnj1388 34044 bj-ssbid2ALT 35540 bj-sb 35565 bj-spst 35567 bj-19.21bit 35568 bj-substax12 35599 bj-hbaeb2 35696 bj-hbnaeb 35698 bj-sbsb 35715 bj-nfcsym 35779 exlimim 36223 exellim 36225 difunieq 36255 wl-aleq 36404 wl-equsal1i 36412 wl-sb8t 36417 wl-2spsbbi 36430 wl-lem-exsb 36431 wl-lem-moexsb 36433 wl-mo2tf 36436 wl-eutf 36438 wl-mo2t 36440 wl-mo3t 36441 wl-sb8eut 36442 wl-ax11-lem2 36448 mopickr 37232 prtlem14 37744 axc5 37763 setindtr 41763 unielss 41967 ismnushort 43060 pm11.57 43148 pm11.59 43150 axc5c4c711toc7 43163 axc5c4c711to11 43164 axc11next 43165 eubiOLD 43195 ssralv2 43292 19.41rg 43311 hbexg 43317 ax6e2ndeq 43320 ssralv2VD 43627 19.41rgVD 43663 hbimpgVD 43665 hbexgVD 43667 ax6e2eqVD 43668 ax6e2ndeqVD 43670 vk15.4jVD 43675 ax6e2ndeqALT 43692 rexsb 45807 ichnfimlem 46131 setrec1lem4 47735 |
Copyright terms: Public domain | W3C validator |