| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version | ||
| Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2073. This theorem shows that our obsolete axiom ax-c5 39055 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2182. It is thought the best we can do using only Tarski's axioms is spw 2035. Also see spvw 1982 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| sp | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1827 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 19.8a 2186 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
| 3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2182 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: spi 2189 sps 2190 2sp 2191 spsd 2192 19.21bi 2194 19.3t 2206 19.3 2207 19.9d 2208 sb4av 2249 sbequ2 2254 axc16gb 2267 axc7 2320 axc4 2324 19.12 2330 exsb 2361 ax12 2425 ax12b 2426 ax13ALT 2427 hbae 2433 sb4a 2482 dfsb2 2495 nfsb4t 2501 mo3 2561 mopick 2622 axi4 2696 axi5r 2697 nfcrALT 2886 rsp 3221 ceqex 3603 elrab3t 3642 abidnf 3657 mob2 3670 sbcnestgfw 4370 sbcnestgf 4375 ralidm 4467 mpteq12f 5180 axrep2 5224 axnulALT 5246 eusv1 5333 alxfr 5349 axprlem4OLD 5371 axprlem5OLD 5372 iota1 6468 dffv2 6926 fiint 9222 isf32lem9 10263 nd3 10491 axrepnd 10496 axpowndlem2 10500 axpowndlem3 10501 axacndlem4 10512 trclfvcotr 14923 relexpindlem 14977 fiinopn 22836 ex-natded9.26-2 30421 bnj1294 34901 bnj570 34989 bnj953 35023 bnj1204 35096 bnj1388 35117 in-ax8 36340 ss-ax8 36341 bj-ssbid2ALT 36780 bj-sb 36804 bj-spst 36806 bj-19.21bit 36807 bj-substax12 36838 bj-hbaeb2 36935 bj-hbnaeb 36937 bj-sbsb 36954 bj-nfcsym 37016 exlimim 37459 exellim 37461 difunieq 37491 wl-aleq 37652 wl-equsal1i 37661 wl-sb8t 37669 wl-2spsbbi 37682 wl-lem-exsb 37683 wl-lem-moexsb 37685 wl-mo2tf 37688 wl-eutf 37690 wl-mo2t 37692 wl-mo3t 37693 wl-sb8eut 37695 mopickr 38468 prtlem14 39046 axc5 39065 setindtr 43181 unielss 43375 ismnushort 44458 pm11.57 44546 pm11.59 44548 axc5c4c711toc7 44561 axc5c4c711to11 44562 axc11next 44563 ssralv2 44688 19.41rg 44707 hbexg 44713 ax6e2ndeq 44716 ssralv2VD 45022 19.41rgVD 45058 hbimpgVD 45060 hbexgVD 45062 ax6e2eqVD 45063 ax6e2ndeqVD 45065 vk15.4jVD 45070 ax6e2ndeqALT 45087 rexsb 47261 ichnfimlem 47625 setrec1lem4 49851 |
| Copyright terms: Public domain | W3C validator |