![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version |
Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2068. This theorem shows that our obsolete axiom ax-c5 38839 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2178. It is thought the best we can do using only Tarski's axioms is spw 2033. Also see spvw 1980 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1824 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.8a 2182 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: spi 2185 sps 2186 2sp 2187 spsd 2188 19.21bi 2190 19.3t 2202 19.3 2203 19.9d 2204 sb4av 2245 sbequ2 2250 axc16gb 2263 axc7 2321 axc4 2325 19.12 2331 exsb 2365 ax12 2431 ax12b 2432 ax13ALT 2433 hbae 2439 sb4a 2488 dfsb2 2501 nfsb4t 2507 mo3 2567 mopick 2628 axi4 2702 axi5r 2703 nfcrALT 2899 nfabdwOLD 2933 rsp 3253 ceqex 3665 elrab3t 3707 abidnf 3724 mob2 3737 sbcnestgfw 4444 sbcnestgf 4449 ralidm 4535 mpteq12f 5254 axrep2 5306 axnulALT 5322 eusv1 5409 alxfr 5425 axprlem4 5444 axprlem5 5445 iota1 6550 dffv2 7017 fiint 9394 fiintOLD 9395 isf32lem9 10430 nd3 10658 axrepnd 10663 axpowndlem2 10667 axpowndlem3 10668 axacndlem4 10679 trclfvcotr 15058 relexpindlem 15112 fiinopn 22928 ex-natded9.26-2 30452 bnj1294 34793 bnj570 34881 bnj953 34915 bnj1204 34988 bnj1388 35009 in-ax8 36190 ss-ax8 36191 bj-ssbid2ALT 36629 bj-sb 36653 bj-spst 36655 bj-19.21bit 36656 bj-substax12 36687 bj-hbaeb2 36784 bj-hbnaeb 36786 bj-sbsb 36803 bj-nfcsym 36865 exlimim 37308 exellim 37310 difunieq 37340 wl-aleq 37489 wl-equsal1i 37498 wl-sb8t 37506 wl-2spsbbi 37519 wl-lem-exsb 37520 wl-lem-moexsb 37522 wl-mo2tf 37525 wl-eutf 37527 wl-mo2t 37529 wl-mo3t 37530 wl-sb8eut 37532 wl-ax11-lem2 37540 mopickr 38319 prtlem14 38830 axc5 38849 setindtr 42981 unielss 43179 ismnushort 44270 pm11.57 44358 pm11.59 44360 axc5c4c711toc7 44373 axc5c4c711to11 44374 axc11next 44375 eubiOLD 44405 ssralv2 44502 19.41rg 44521 hbexg 44527 ax6e2ndeq 44530 ssralv2VD 44837 19.41rgVD 44873 hbimpgVD 44875 hbexgVD 44877 ax6e2eqVD 44878 ax6e2ndeqVD 44880 vk15.4jVD 44885 ax6e2ndeqALT 44902 rexsb 47014 ichnfimlem 47337 setrec1lem4 48782 |
Copyright terms: Public domain | W3C validator |