| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version | ||
| Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2069. This theorem shows that our obsolete axiom ax-c5 38876 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2178. It is thought the best we can do using only Tarski's axioms is spw 2034. Also see spvw 1981 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| sp | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1826 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 19.8a 2182 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
| 3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: spi 2185 sps 2186 2sp 2187 spsd 2188 19.21bi 2190 19.3t 2202 19.3 2203 19.9d 2204 sb4av 2245 sbequ2 2250 axc16gb 2263 axc7 2316 axc4 2320 19.12 2326 exsb 2357 ax12 2421 ax12b 2422 ax13ALT 2423 hbae 2429 sb4a 2478 dfsb2 2491 nfsb4t 2497 mo3 2557 mopick 2618 axi4 2692 axi5r 2693 nfcrALT 2882 rsp 3225 ceqex 3618 elrab3t 3658 abidnf 3673 mob2 3686 sbcnestgfw 4384 sbcnestgf 4389 ralidm 4475 mpteq12f 5192 axrep2 5237 axnulALT 5259 eusv1 5346 alxfr 5362 axprlem4OLD 5384 axprlem5OLD 5385 iota1 6488 dffv2 6956 fiint 9277 fiintOLD 9278 isf32lem9 10314 nd3 10542 axrepnd 10547 axpowndlem2 10551 axpowndlem3 10552 axacndlem4 10563 trclfvcotr 14975 relexpindlem 15029 fiinopn 22788 ex-natded9.26-2 30349 bnj1294 34807 bnj570 34895 bnj953 34929 bnj1204 35002 bnj1388 35023 in-ax8 36212 ss-ax8 36213 bj-ssbid2ALT 36651 bj-sb 36675 bj-spst 36677 bj-19.21bit 36678 bj-substax12 36709 bj-hbaeb2 36806 bj-hbnaeb 36808 bj-sbsb 36825 bj-nfcsym 36887 exlimim 37330 exellim 37332 difunieq 37362 wl-aleq 37523 wl-equsal1i 37532 wl-sb8t 37540 wl-2spsbbi 37553 wl-lem-exsb 37554 wl-lem-moexsb 37556 wl-mo2tf 37559 wl-eutf 37561 wl-mo2t 37563 wl-mo3t 37564 wl-sb8eut 37566 wl-ax11-lem2 37574 mopickr 38345 prtlem14 38867 axc5 38886 setindtr 43013 unielss 43207 ismnushort 44290 pm11.57 44378 pm11.59 44380 axc5c4c711toc7 44393 axc5c4c711to11 44394 axc11next 44395 eubiOLD 44425 ssralv2 44521 19.41rg 44540 hbexg 44546 ax6e2ndeq 44549 ssralv2VD 44855 19.41rgVD 44891 hbimpgVD 44893 hbexgVD 44895 ax6e2eqVD 44896 ax6e2ndeqVD 44898 vk15.4jVD 44903 ax6e2ndeqALT 44920 rexsb 47100 ichnfimlem 47464 setrec1lem4 49679 |
| Copyright terms: Public domain | W3C validator |