Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version |
Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2072. This theorem shows that our obsolete axiom ax-c5 36904 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2172. It is thought the best we can do using only Tarski's axioms is spw 2038. Also see spvw 1985 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1829 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.8a 2175 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: spi 2178 sps 2179 2sp 2180 spsd 2181 19.21bi 2183 19.3t 2195 19.3 2196 19.9d 2197 sb4av 2237 sbequ2 2242 sbequ2OLD 2243 axc16gb 2255 axc7 2312 axc4 2316 19.12 2322 exsb 2358 ax12 2424 ax12b 2425 ax13ALT 2426 hbae 2432 sb4a 2485 dfsb2 2498 nfsb4t 2504 mo3 2565 mopick 2628 axi4 2701 axi5r 2702 nfcrALT 2894 nfcriOLDOLD 2899 nfabdwOLD 2932 rsp 3132 ceqex 3583 elrab3t 3624 abidnf 3639 mob2 3651 sbcbi2OLD 3780 sbcnestgfw 4353 sbcnestgf 4358 ralidm 4443 mpteq12f 5163 axrep2 5213 axnulALT 5229 eusv1 5315 alxfr 5331 axprlem4 5350 axprlem5 5351 iota1 6414 dffv2 6872 fiint 9100 isf32lem9 10126 nd3 10354 axrepnd 10359 axpowndlem2 10363 axpowndlem3 10364 axacndlem4 10375 trclfvcotr 14729 relexpindlem 14783 fiinopn 22059 ex-natded9.26-2 28793 bnj1294 32806 bnj570 32894 bnj953 32928 bnj1204 33001 bnj1388 33022 bj-ssbid2ALT 34853 bj-sb 34878 bj-spst 34880 bj-19.21bit 34881 bj-substax12 34912 bj-dtru 35008 bj-hbaeb2 35010 bj-hbnaeb 35012 bj-sbsb 35029 bj-nfcsym 35093 exlimim 35522 exellim 35524 difunieq 35554 wl-aleq 35703 wl-equsal1i 35711 wl-sb8t 35716 wl-2spsbbi 35729 wl-lem-exsb 35730 wl-lem-moexsb 35732 wl-mo2tf 35735 wl-eutf 35737 wl-mo2t 35739 wl-mo3t 35740 wl-sb8eut 35741 wl-ax11-lem2 35746 prtlem14 36895 axc5 36914 setindtr 40853 ismnushort 41926 pm11.57 42014 pm11.59 42016 axc5c4c711toc7 42029 axc5c4c711to11 42030 axc11next 42031 eubiOLD 42061 ssralv2 42158 19.41rg 42177 hbexg 42183 ax6e2ndeq 42186 ssralv2VD 42493 19.41rgVD 42529 hbimpgVD 42531 hbexgVD 42533 ax6e2eqVD 42534 ax6e2ndeqVD 42536 vk15.4jVD 42541 ax6e2ndeqALT 42558 rexsb 44602 ichnfimlem 44926 setrec1lem4 46407 |
Copyright terms: Public domain | W3C validator |