![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version |
Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2071. This theorem shows that our obsolete axiom ax-c5 37845 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2171. It is thought the best we can do using only Tarski's axioms is spw 2037. Also see spvw 1984 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
Ref | Expression |
---|---|
sp | ⊢ (∀𝑥𝜑 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alex 1828 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
2 | 19.8a 2174 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1782 |
This theorem is referenced by: spi 2177 sps 2178 2sp 2179 spsd 2180 19.21bi 2182 19.3t 2194 19.3 2195 19.9d 2196 sb4av 2236 sbequ2 2241 axc16gb 2253 axc7 2310 axc4 2314 19.12 2320 exsb 2355 ax12 2422 ax12b 2423 ax13ALT 2424 hbae 2430 sb4a 2479 dfsb2 2492 nfsb4t 2498 mo3 2558 mopick 2621 axi4 2694 axi5r 2695 nfcrALT 2889 nfcriOLDOLD 2894 nfabdwOLD 2927 rsp 3244 ceqex 3640 elrab3t 3682 abidnf 3698 mob2 3711 sbcbi2OLD 3840 sbcnestgfw 4418 sbcnestgf 4423 ralidm 4511 mpteq12f 5236 axrep2 5288 axnulALT 5304 eusv1 5389 alxfr 5405 axprlem4 5424 axprlem5 5425 iota1 6520 dffv2 6986 fiint 9326 isf32lem9 10358 nd3 10586 axrepnd 10591 axpowndlem2 10595 axpowndlem3 10596 axacndlem4 10607 trclfvcotr 14958 relexpindlem 15012 fiinopn 22410 ex-natded9.26-2 29711 bnj1294 33897 bnj570 33985 bnj953 34019 bnj1204 34092 bnj1388 34113 bj-ssbid2ALT 35632 bj-sb 35657 bj-spst 35659 bj-19.21bit 35660 bj-substax12 35691 bj-hbaeb2 35788 bj-hbnaeb 35790 bj-sbsb 35807 bj-nfcsym 35871 exlimim 36315 exellim 36317 difunieq 36347 wl-aleq 36496 wl-equsal1i 36504 wl-sb8t 36509 wl-2spsbbi 36522 wl-lem-exsb 36523 wl-lem-moexsb 36525 wl-mo2tf 36528 wl-eutf 36530 wl-mo2t 36532 wl-mo3t 36533 wl-sb8eut 36534 wl-ax11-lem2 36540 mopickr 37324 prtlem14 37836 axc5 37855 setindtr 41851 unielss 42055 ismnushort 43148 pm11.57 43236 pm11.59 43238 axc5c4c711toc7 43251 axc5c4c711to11 43252 axc11next 43253 eubiOLD 43283 ssralv2 43380 19.41rg 43399 hbexg 43405 ax6e2ndeq 43408 ssralv2VD 43715 19.41rgVD 43751 hbimpgVD 43753 hbexgVD 43755 ax6e2eqVD 43756 ax6e2ndeqVD 43758 vk15.4jVD 43763 ax6e2ndeqALT 43780 rexsb 45892 ichnfimlem 46216 setrec1lem4 47819 |
Copyright terms: Public domain | W3C validator |