| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sp | Structured version Visualization version GIF version | ||
| Description: Specialization. A
universally quantified wff implies the wff without a
quantifier. Axiom scheme B5 of [Tarski]
p. 67 (under his system S2,
defined in the last paragraph on p. 77). Also appears as Axiom scheme C5'
in [Megill] p. 448 (p. 16 of the
preprint). This corresponds to the axiom
(T) of modal logic.
For the axiom of specialization presented in many logic textbooks, see Theorem stdpc4 2071. This theorem shows that our obsolete axiom ax-c5 38922 can be derived from the others. The proof uses ideas from the proof of Lemma 21 of [Monk2] p. 114. It appears that this scheme cannot be derived directly from Tarski's axioms without auxiliary axiom scheme ax-12 2180. It is thought the best we can do using only Tarski's axioms is spw 2035. Also see spvw 1982 where 𝑥 and 𝜑 are disjoint, using fewer axioms. (Contributed by NM, 21-May-2008.) (Proof shortened by Scott Fenton, 24-Jan-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) |
| Ref | Expression |
|---|---|
| sp | ⊢ (∀𝑥𝜑 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alex 1827 | . 2 ⊢ (∀𝑥𝜑 ↔ ¬ ∃𝑥 ¬ 𝜑) | |
| 2 | 19.8a 2184 | . . 3 ⊢ (¬ 𝜑 → ∃𝑥 ¬ 𝜑) | |
| 3 | 2 | con1i 147 | . 2 ⊢ (¬ ∃𝑥 ¬ 𝜑 → 𝜑) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (∀𝑥𝜑 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: spi 2187 sps 2188 2sp 2189 spsd 2190 19.21bi 2192 19.3t 2204 19.3 2205 19.9d 2206 sb4av 2247 sbequ2 2252 axc16gb 2265 axc7 2318 axc4 2322 19.12 2328 exsb 2359 ax12 2423 ax12b 2424 ax13ALT 2425 hbae 2431 sb4a 2480 dfsb2 2493 nfsb4t 2499 mo3 2559 mopick 2620 axi4 2694 axi5r 2695 nfcrALT 2885 rsp 3220 ceqex 3602 elrab3t 3641 abidnf 3656 mob2 3669 sbcnestgfw 4366 sbcnestgf 4371 ralidm 4457 mpteq12f 5171 axrep2 5215 axnulALT 5237 eusv1 5324 alxfr 5340 axprlem4OLD 5362 axprlem5OLD 5363 iota1 6455 dffv2 6912 fiint 9206 isf32lem9 10247 nd3 10475 axrepnd 10480 axpowndlem2 10484 axpowndlem3 10485 axacndlem4 10496 trclfvcotr 14911 relexpindlem 14965 fiinopn 22811 ex-natded9.26-2 30392 bnj1294 34821 bnj570 34909 bnj953 34943 bnj1204 35016 bnj1388 35037 in-ax8 36258 ss-ax8 36259 bj-ssbid2ALT 36697 bj-sb 36721 bj-spst 36723 bj-19.21bit 36724 bj-substax12 36755 bj-hbaeb2 36852 bj-hbnaeb 36854 bj-sbsb 36871 bj-nfcsym 36933 exlimim 37376 exellim 37378 difunieq 37408 wl-aleq 37569 wl-equsal1i 37578 wl-sb8t 37586 wl-2spsbbi 37599 wl-lem-exsb 37600 wl-lem-moexsb 37602 wl-mo2tf 37605 wl-eutf 37607 wl-mo2t 37609 wl-mo3t 37610 wl-sb8eut 37612 wl-ax11-lem2 37620 mopickr 38391 prtlem14 38913 axc5 38932 setindtr 43057 unielss 43251 ismnushort 44334 pm11.57 44422 pm11.59 44424 axc5c4c711toc7 44437 axc5c4c711to11 44438 axc11next 44439 ssralv2 44564 19.41rg 44583 hbexg 44589 ax6e2ndeq 44592 ssralv2VD 44898 19.41rgVD 44934 hbimpgVD 44936 hbexgVD 44938 ax6e2eqVD 44939 ax6e2ndeqVD 44941 vk15.4jVD 44946 ax6e2ndeqALT 44963 rexsb 47130 ichnfimlem 47494 setrec1lem4 49722 |
| Copyright terms: Public domain | W3C validator |