Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfa1-o Structured version   Visualization version   GIF version

Theorem nfa1-o 38897
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa1-o 𝑥𝑥𝜑

Proof of Theorem nfa1-o
StepHypRef Expression
1 hba1-o 38879 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
21nf5i 2144 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1535  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-10 2139  ax-c5 38865  ax-c4 38866  ax-c7 38867
This theorem depends on definitions:  df-bi 207  df-ex 1777  df-nf 1781
This theorem is referenced by:  axc11n-16  38920  ax12eq  38923  ax12el  38924  ax12v2-o  38931
  Copyright terms: Public domain W3C validator