Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfa1-o | Structured version Visualization version GIF version |
Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfa1-o | ⊢ Ⅎ𝑥∀𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1-o 37172 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
2 | 1 | nf5i 2141 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1538 Ⅎwnf 1784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2136 ax-c5 37158 ax-c4 37159 ax-c7 37160 |
This theorem depends on definitions: df-bi 206 df-ex 1781 df-nf 1785 |
This theorem is referenced by: axc11n-16 37213 ax12eq 37216 ax12el 37217 ax12v2-o 37224 |
Copyright terms: Public domain | W3C validator |