Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfa1-o Structured version   Visualization version   GIF version

Theorem nfa1-o 37190
Description: 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa1-o 𝑥𝑥𝜑

Proof of Theorem nfa1-o
StepHypRef Expression
1 hba1-o 37172 . 2 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
21nf5i 2141 1 𝑥𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wal 1538  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-10 2136  ax-c5 37158  ax-c4 37159  ax-c7 37160
This theorem depends on definitions:  df-bi 206  df-ex 1781  df-nf 1785
This theorem is referenced by:  axc11n-16  37213  ax12eq  37216  ax12el  37217  ax12v2-o  37224
  Copyright terms: Public domain W3C validator