| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfa1-o | Structured version Visualization version GIF version | ||
| Description: 𝑥 is not free in ∀𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfa1-o | ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hba1-o 38920 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
| 2 | 1 | nf5i 2147 | 1 ⊢ Ⅎ𝑥∀𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 ax-c5 38906 ax-c4 38907 ax-c7 38908 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: axc11n-16 38961 ax12eq 38964 ax12el 38965 ax12v2-o 38972 |
| Copyright terms: Public domain | W3C validator |