Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axc711to11 | Structured version Visualization version GIF version |
Description: Rederivation of ax-11 2154 from axc711 36928. Note that ax-c7 36899 and ax-11 2154 are not used by the rederivation. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axc711to11 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc711toc7 36930 | . . 3 ⊢ (¬ ∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ¬ ∀𝑥∀𝑦𝜑) | |
2 | 1 | con4i 114 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
3 | axc711 36928 | . . 3 ⊢ (¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) | |
4 | 3 | alimi 1814 | . 2 ⊢ (∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
5 | 2, 4 | syl 17 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-11 2154 ax-c5 36897 ax-c4 36898 ax-c7 36899 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |