| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axc711to11 | Structured version Visualization version GIF version | ||
| Description: Rederivation of ax-11 2156 from axc711 38856. Note that ax-c7 38827 and ax-11 2156 are not used by the rederivation. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| axc711to11 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axc711toc7 38858 | . . 3 ⊢ (¬ ∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ¬ ∀𝑥∀𝑦𝜑) | |
| 2 | 1 | con4i 114 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑) |
| 3 | axc711 38856 | . . 3 ⊢ (¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) | |
| 4 | 3 | alimi 1810 | . 2 ⊢ (∀𝑦 ¬ ∀𝑦 ¬ ∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-11 2156 ax-c5 38825 ax-c4 38826 ax-c7 38827 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |