|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axfrege58a | Structured version Visualization version GIF version | ||
| Description: Identical to anifp 1072. Justification for ax-frege58a 43888. (Contributed by RP, 28-Mar-2020.) | 
| Ref | Expression | 
|---|---|
| axfrege58a | ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anifp 1072 | 1 ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |