Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axfrege58a Structured version   Visualization version   GIF version

Theorem axfrege58a 41371
Description: Identical to anifp 1068. Justification for ax-frege58a 41372. (Contributed by RP, 28-Mar-2020.)
Assertion
Ref Expression
axfrege58a ((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒))

Proof of Theorem axfrege58a
StepHypRef Expression
1 anifp 1068 1 ((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator