|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > anifp | Structured version Visualization version GIF version | ||
| Description: The conditional operator is implied by the conjunction of its possible outputs. Dual statement of ifpor 1073. (Contributed by BJ, 30-Sep-2019.) | 
| Ref | Expression | 
|---|---|
| anifp | ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | olc 869 | . . 3 ⊢ (𝜓 → (¬ 𝜑 ∨ 𝜓)) | |
| 2 | olc 869 | . . 3 ⊢ (𝜒 → (𝜑 ∨ 𝜒)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝜓 ∧ 𝜒) → ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | 
| 4 | dfifp4 1067 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: psdmvr 22173 bj-consensus 36579 bj-consensusALT 36580 axfrege58a 43887 | 
| Copyright terms: Public domain | W3C validator |