MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi9 Structured version   Visualization version   GIF version

Theorem axi9 2705
Description: Axiom of existence (intuitionistic logic axiom ax-i9). In classical logic, this is equivalent to ax-6 1972 but in intuitionistic logic it needs to be stated using the existential quantifier. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
Assertion
Ref Expression
axi9 𝑥 𝑥 = 𝑦

Proof of Theorem axi9
StepHypRef Expression
1 ax6e 2383 1 𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator