![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax6e | Structured version Visualization version GIF version |
Description: At least one individual
exists. This is not a theorem of free logic,
which is sound in empty domains. For such a logic, we would add this
theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the
system consisting of ax-4 1811 through ax-9 2116,
all axioms other than
ax-6 1971 are believed to be theorems of free logic,
although the system
without ax-6 1971 is not complete in free logic.
Usage of this theorem is discouraged because it depends on ax-13 2371. It is preferred to use ax6ev 1973 when it is sufficient. (Contributed by NM, 14-May-1993.) Shortened after ax13lem1 2373 became available. (Revised by Wolf Lammen, 8-Sep-2018.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax6e | ⊢ ∃𝑥 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2174 | . 2 ⊢ (𝑥 = 𝑦 → ∃𝑥 𝑥 = 𝑦) | |
2 | ax13lem1 2373 | . . . 4 ⊢ (¬ 𝑥 = 𝑦 → (𝑤 = 𝑦 → ∀𝑥 𝑤 = 𝑦)) | |
3 | ax6ev 1973 | . . . . . 6 ⊢ ∃𝑥 𝑥 = 𝑤 | |
4 | equtr 2024 | . . . . . 6 ⊢ (𝑥 = 𝑤 → (𝑤 = 𝑦 → 𝑥 = 𝑦)) | |
5 | 3, 4 | eximii 1839 | . . . . 5 ⊢ ∃𝑥(𝑤 = 𝑦 → 𝑥 = 𝑦) |
6 | 5 | 19.35i 1881 | . . . 4 ⊢ (∀𝑥 𝑤 = 𝑦 → ∃𝑥 𝑥 = 𝑦) |
7 | 2, 6 | syl6com 37 | . . 3 ⊢ (𝑤 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥 𝑥 = 𝑦)) |
8 | ax6ev 1973 | . . 3 ⊢ ∃𝑤 𝑤 = 𝑦 | |
9 | 7, 8 | exlimiiv 1934 | . 2 ⊢ (¬ 𝑥 = 𝑦 → ∃𝑥 𝑥 = 𝑦) |
10 | 1, 9 | pm2.61i 182 | 1 ⊢ ∃𝑥 𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 ax-13 2371 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: ax6 2383 spimt 2385 spim 2386 spimed 2387 spimvALT 2390 spei 2393 equs4 2415 equsal 2416 equsexALT 2418 equvini 2454 equvel 2455 2ax6elem 2469 axi9 2699 dtrucor2 5369 axextnd 10582 ax8dfeq 34758 bj-axc10 35649 bj-alequex 35650 ax6er 35699 exlimiieq1 35700 wl-exeq 36391 wl-equsald 36396 ax6e2nd 43304 ax6e2ndVD 43654 ax6e2ndALT 43676 spd 47676 |
Copyright terms: Public domain | W3C validator |