MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axi10 Structured version   Visualization version   GIF version

Theorem axi10 2708
Description: Axiom of Quantifier Substitution (intuitionistic logic axiom ax-10). This is just axc11n 2428 by another name. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
Assertion
Ref Expression
axi10 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)

Proof of Theorem axi10
StepHypRef Expression
1 axc11n 2428 1 (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-10 2141  ax-12 2175  ax-13 2374
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-nf 1791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator