Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axi10 | Structured version Visualization version GIF version |
Description: Axiom of Quantifier Substitution (intuitionistic logic axiom ax-10). This is just axc11n 2428 by another name. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.) |
Ref | Expression |
---|---|
axi10 | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc11n 2428 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-10 2141 ax-12 2175 ax-13 2374 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-nf 1791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |