|   | Mathbox for Jarvin Udandy | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aifftbifffaibifff | Structured version Visualization version GIF version | ||
| Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) | 
| Ref | Expression | 
|---|---|
| aifftbifffaibifff.1 | ⊢ (𝜑 ↔ ⊤) | 
| aifftbifffaibifff.2 | ⊢ (𝜓 ↔ ⊥) | 
| Ref | Expression | 
|---|---|
| aifftbifffaibifff | ⊢ ((𝜑 ↔ 𝜓) ↔ ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | aifftbifffaibifff.1 | . . . . 5 ⊢ (𝜑 ↔ ⊤) | |
| 2 | 1 | aistia 46909 | . . . 4 ⊢ 𝜑 | 
| 3 | aifftbifffaibifff.2 | . . . . 5 ⊢ (𝜓 ↔ ⊥) | |
| 4 | 3 | aisfina 46910 | . . . 4 ⊢ ¬ 𝜓 | 
| 5 | 2, 4 | abnotbtaxb 46927 | . . 3 ⊢ (𝜑 ⊻ 𝜓) | 
| 6 | 5 | axorbtnotaiffb 46915 | . 2 ⊢ ¬ (𝜑 ↔ 𝜓) | 
| 7 | nbfal 1555 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ↔ 𝜓) ↔ ⊥)) | |
| 8 | 7 | biimpi 216 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜓) ↔ ⊥)) | 
| 9 | 6, 8 | ax-mp 5 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ⊥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊤wtru 1541 ⊥wfal 1552 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-xor 1512 df-tru 1543 df-fal 1553 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |