Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > aifftbifffaibifff | Structured version Visualization version GIF version |
Description: Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
Ref | Expression |
---|---|
aifftbifffaibifff.1 | ⊢ (𝜑 ↔ ⊤) |
aifftbifffaibifff.2 | ⊢ (𝜓 ↔ ⊥) |
Ref | Expression |
---|---|
aifftbifffaibifff | ⊢ ((𝜑 ↔ 𝜓) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aifftbifffaibifff.1 | . . . . 5 ⊢ (𝜑 ↔ ⊤) | |
2 | 1 | aistia 44392 | . . . 4 ⊢ 𝜑 |
3 | aifftbifffaibifff.2 | . . . . 5 ⊢ (𝜓 ↔ ⊥) | |
4 | 3 | aisfina 44393 | . . . 4 ⊢ ¬ 𝜓 |
5 | 2, 4 | abnotbtaxb 44410 | . . 3 ⊢ (𝜑 ⊻ 𝜓) |
6 | 5 | axorbtnotaiffb 44398 | . 2 ⊢ ¬ (𝜑 ↔ 𝜓) |
7 | nbfal 1554 | . . 3 ⊢ (¬ (𝜑 ↔ 𝜓) ↔ ((𝜑 ↔ 𝜓) ↔ ⊥)) | |
8 | 7 | biimpi 215 | . 2 ⊢ (¬ (𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜓) ↔ ⊥)) |
9 | 6, 8 | ax-mp 5 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ⊥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊤wtru 1540 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-xor 1507 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |