Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > axreg2 | Structured version Visualization version GIF version |
Description: Axiom of Regularity expressed more compactly. (Contributed by NM, 14-Aug-2003.) |
Ref | Expression |
---|---|
axreg2 | ⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-reg 9351 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | |
2 | 1 | 19.23bi 2184 | 1 ⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: zfregcl 9353 axregndlem2 10359 |
Copyright terms: Public domain | W3C validator |