Step | Hyp | Ref
| Expression |
1 | | axreg2 9396 |
. . . . . 6
⊢ (𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) |
2 | 1 | ax-gen 1795 |
. . . . 5
⊢
∀𝑤(𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) |
3 | | nfnae 2432 |
. . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
4 | | nfnae 2432 |
. . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑧 |
5 | 3, 4 | nfan 1900 |
. . . . . 6
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
6 | | nfcvd 2906 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑤) |
7 | | nfcvf 2934 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
8 | 7 | adantr 482 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑦) |
9 | 6, 8 | nfeld 2916 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑤 ∈ 𝑦) |
10 | | nfv 1915 |
. . . . . . . 8
⊢
Ⅎ𝑤(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
11 | | nfnae 2432 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑦 |
12 | | nfnae 2432 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑧 |
13 | 11, 12 | nfan 1900 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
14 | | nfcvf 2934 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥𝑧) |
15 | 14 | adantl 483 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑧) |
16 | 15, 6 | nfeld 2916 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 ∈ 𝑤) |
17 | 15, 8 | nfeld 2916 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 ∈ 𝑦) |
18 | 17 | nfnd 1859 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 ¬ 𝑧 ∈ 𝑦) |
19 | 16, 18 | nfimd 1895 |
. . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) |
20 | 13, 19 | nfald 2320 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) |
21 | 9, 20 | nfand 1898 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) |
22 | 10, 21 | nfexd 2321 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) |
23 | 9, 22 | nfimd 1895 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)))) |
24 | | simpr 486 |
. . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → 𝑤 = 𝑥) |
25 | 24 | eleq1d 2821 |
. . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) |
26 | | nfcvd 2906 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧𝑤) |
27 | | nfcvf2 2935 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧𝑥) |
28 | 27 | adantl 483 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧𝑥) |
29 | 26, 28 | nfeqd 2915 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑥) |
30 | 13, 29 | nfan1 2191 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) |
31 | 24 | eleq2d 2822 |
. . . . . . . . . . . . . 14
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥)) |
32 | 31 | imbi1d 342 |
. . . . . . . . . . . . 13
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
33 | 30, 32 | albid 2213 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
34 | 25, 33 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
35 | 34 | ex 414 |
. . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
36 | 5, 21, 35 | cbvexd 2406 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
37 | 36 | adantr 482 |
. . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
38 | 25, 37 | imbi12d 345 |
. . . . . . 7
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) ↔ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
39 | 38 | ex 414 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) ↔ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))))) |
40 | 5, 23, 39 | cbvald 2405 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑤(𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) ↔ ∀𝑥(𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
41 | 2, 40 | mpbii 232 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ∀𝑥(𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
42 | 41 | 19.21bi 2180 |
. . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
43 | 42 | ex 414 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
44 | | elirrv 9399 |
. . . . 5
⊢ ¬
𝑥 ∈ 𝑥 |
45 | | elequ2 2119 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦)) |
46 | 44, 45 | mtbii 326 |
. . . 4
⊢ (𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
47 | 46 | sps 2176 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
48 | 47 | pm2.21d 121 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
49 | | axregndlem1 10404 |
. 2
⊢
(∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
50 | 43, 48, 49 | pm2.61ii 183 |
1
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |