MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axregndlem2 Structured version   Visualization version   GIF version

Theorem axregndlem2 10405
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
axregndlem2 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Distinct variable group:   𝑦,𝑧

Proof of Theorem axregndlem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 axreg2 9396 . . . . . 6 (𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)))
21ax-gen 1795 . . . . 5 𝑤(𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)))
3 nfnae 2432 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
4 nfnae 2432 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑧
53, 4nfan 1900 . . . . . 6 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
6 nfcvd 2906 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑤)
7 nfcvf 2934 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
87adantr 482 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑦)
96, 8nfeld 2916 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑤𝑦)
10 nfv 1915 . . . . . . . 8 𝑤(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
11 nfnae 2432 . . . . . . . . . . 11 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
12 nfnae 2432 . . . . . . . . . . 11 𝑧 ¬ ∀𝑥 𝑥 = 𝑧
1311, 12nfan 1900 . . . . . . . . . 10 𝑧(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
14 nfcvf 2934 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑧𝑥𝑧)
1514adantl 483 . . . . . . . . . . . 12 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑧)
1615, 6nfeld 2916 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧𝑤)
1715, 8nfeld 2916 . . . . . . . . . . . 12 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧𝑦)
1817nfnd 1859 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 ¬ 𝑧𝑦)
1916, 18nfimd 1895 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑧𝑤 → ¬ 𝑧𝑦))
2013, 19nfald 2320 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑧(𝑧𝑤 → ¬ 𝑧𝑦))
219, 20nfand 1898 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)))
2210, 21nfexd 2321 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)))
239, 22nfimd 1895 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦))))
24 simpr 486 . . . . . . . . 9 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → 𝑤 = 𝑥)
2524eleq1d 2821 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑤𝑦𝑥𝑦))
26 nfcvd 2906 . . . . . . . . . . . . . . 15 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑧𝑤)
27 nfcvf2 2935 . . . . . . . . . . . . . . . 16 (¬ ∀𝑥 𝑥 = 𝑧𝑧𝑥)
2827adantl 483 . . . . . . . . . . . . . . 15 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑧𝑥)
2926, 28nfeqd 2915 . . . . . . . . . . . . . 14 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑥)
3013, 29nfan1 2191 . . . . . . . . . . . . 13 𝑧((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥)
3124eleq2d 2822 . . . . . . . . . . . . . 14 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑧𝑤𝑧𝑥))
3231imbi1d 342 . . . . . . . . . . . . 13 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑧𝑤 → ¬ 𝑧𝑦) ↔ (𝑧𝑥 → ¬ 𝑧𝑦)))
3330, 32albid 2213 . . . . . . . . . . . 12 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦) ↔ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
3425, 33anbi12d 632 . . . . . . . . . . 11 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3534ex 414 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
365, 21, 35cbvexd 2406 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)) ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3736adantr 482 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)) ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3825, 37imbi12d 345 . . . . . . 7 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦))) ↔ (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
3938ex 414 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦))) ↔ (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))))
405, 23, 39cbvald 2405 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑤(𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦))) ↔ ∀𝑥(𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
412, 40mpbii 232 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ∀𝑥(𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
424119.21bi 2180 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
4342ex 414 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
44 elirrv 9399 . . . . 5 ¬ 𝑥𝑥
45 elequ2 2119 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
4644, 45mtbii 326 . . . 4 (𝑥 = 𝑦 → ¬ 𝑥𝑦)
4746sps 2176 . . 3 (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦)
4847pm2.21d 121 . 2 (∀𝑥 𝑥 = 𝑦 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
49 axregndlem1 10404 . 2 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
5043, 48, 49pm2.61ii 183 1 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wal 1537  wex 1779  wnfc 2885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-13 2370  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-reg 9395
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-v 3439  df-dif 3895  df-un 3897  df-nul 4263  df-sn 4566  df-pr 4568
This theorem is referenced by:  axregnd  10406
  Copyright terms: Public domain W3C validator