MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axregndlem2 Structured version   Visualization version   GIF version

Theorem axregndlem2 10014
Description: Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2379. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
axregndlem2 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Distinct variable group:   𝑦,𝑧

Proof of Theorem axregndlem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 axreg2 9041 . . . . . 6 (𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)))
21ax-gen 1797 . . . . 5 𝑤(𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)))
3 nfnae 2445 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
4 nfnae 2445 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑧
53, 4nfan 1900 . . . . . 6 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
6 nfcvd 2956 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑤)
7 nfcvf 2981 . . . . . . . . 9 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
87adantr 484 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑦)
96, 8nfeld 2966 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑤𝑦)
10 nfv 1915 . . . . . . . 8 𝑤(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
11 nfnae 2445 . . . . . . . . . . 11 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
12 nfnae 2445 . . . . . . . . . . 11 𝑧 ¬ ∀𝑥 𝑥 = 𝑧
1311, 12nfan 1900 . . . . . . . . . 10 𝑧(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
14 nfcvf 2981 . . . . . . . . . . . . 13 (¬ ∀𝑥 𝑥 = 𝑧𝑥𝑧)
1514adantl 485 . . . . . . . . . . . 12 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑥𝑧)
1615, 6nfeld 2966 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧𝑤)
1715, 8nfeld 2966 . . . . . . . . . . . 12 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧𝑦)
1817nfnd 1859 . . . . . . . . . . 11 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 ¬ 𝑧𝑦)
1916, 18nfimd 1895 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑧𝑤 → ¬ 𝑧𝑦))
2013, 19nfald 2336 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑧(𝑧𝑤 → ¬ 𝑧𝑦))
219, 20nfand 1898 . . . . . . . 8 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)))
2210, 21nfexd 2337 . . . . . . 7 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)))
239, 22nfimd 1895 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦))))
24 simpr 488 . . . . . . . . 9 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → 𝑤 = 𝑥)
2524eleq1d 2874 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑤𝑦𝑥𝑦))
26 nfcvd 2956 . . . . . . . . . . . . . . 15 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑧𝑤)
27 nfcvf2 2982 . . . . . . . . . . . . . . . 16 (¬ ∀𝑥 𝑥 = 𝑧𝑧𝑥)
2827adantl 485 . . . . . . . . . . . . . . 15 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → 𝑧𝑥)
2926, 28nfeqd 2965 . . . . . . . . . . . . . 14 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑥)
3013, 29nfan1 2198 . . . . . . . . . . . . 13 𝑧((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥)
3124eleq2d 2875 . . . . . . . . . . . . . 14 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑧𝑤𝑧𝑥))
3231imbi1d 345 . . . . . . . . . . . . 13 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑧𝑤 → ¬ 𝑧𝑦) ↔ (𝑧𝑥 → ¬ 𝑧𝑦)))
3330, 32albid 2222 . . . . . . . . . . . 12 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦) ↔ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
3425, 33anbi12d 633 . . . . . . . . . . 11 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3534ex 416 . . . . . . . . . 10 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)) ↔ (𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
365, 21, 35cbvexd 2418 . . . . . . . . 9 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)) ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3736adantr 484 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦)) ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
3825, 37imbi12d 348 . . . . . . 7 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦))) ↔ (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
3938ex 416 . . . . . 6 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦))) ↔ (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))))
405, 23, 39cbvald 2417 . . . . 5 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑤(𝑤𝑦 → ∃𝑤(𝑤𝑦 ∧ ∀𝑧(𝑧𝑤 → ¬ 𝑧𝑦))) ↔ ∀𝑥(𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
412, 40mpbii 236 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ∀𝑥(𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
424119.21bi 2186 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
4342ex 416 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))))
44 elirrv 9044 . . . . 5 ¬ 𝑥𝑥
45 elequ2 2126 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑥𝑦))
4644, 45mtbii 329 . . . 4 (𝑥 = 𝑦 → ¬ 𝑥𝑦)
4746sps 2182 . . 3 (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦)
4847pm2.21d 121 . 2 (∀𝑥 𝑥 = 𝑦 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
49 axregndlem1 10013 . 2 (∀𝑥 𝑥 = 𝑧 → (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦))))
5043, 48, 49pm2.61ii 186 1 (𝑥𝑦 → ∃𝑥(𝑥𝑦 ∧ ∀𝑧(𝑧𝑥 → ¬ 𝑧𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536  wex 1781  wnfc 2936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-reg 9040
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-nul 4244  df-sn 4526  df-pr 4528
This theorem is referenced by:  axregnd  10015
  Copyright terms: Public domain W3C validator