| Step | Hyp | Ref
| Expression |
| 1 | | axreg2 9612 |
. . . . . 6
⊢ (𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) |
| 2 | 1 | ax-gen 1795 |
. . . . 5
⊢
∀𝑤(𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) |
| 3 | | nfnae 2439 |
. . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
| 4 | | nfnae 2439 |
. . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑧 |
| 5 | 3, 4 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
| 6 | | nfcvd 2900 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑤) |
| 7 | | nfcvf 2926 |
. . . . . . . . 9
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| 8 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑦) |
| 9 | 6, 8 | nfeld 2911 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑤 ∈ 𝑦) |
| 10 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑤(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
| 11 | | nfnae 2439 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑦 |
| 12 | | nfnae 2439 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑧 |
| 13 | 11, 12 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑧(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
| 14 | | nfcvf 2926 |
. . . . . . . . . . . . 13
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥𝑧) |
| 15 | 14 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥𝑧) |
| 16 | 15, 6 | nfeld 2911 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 ∈ 𝑤) |
| 17 | 15, 8 | nfeld 2911 |
. . . . . . . . . . . 12
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑧 ∈ 𝑦) |
| 18 | 17 | nfnd 1858 |
. . . . . . . . . . 11
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 ¬ 𝑧 ∈ 𝑦) |
| 19 | 16, 18 | nfimd 1894 |
. . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) |
| 20 | 13, 19 | nfald 2329 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) |
| 21 | 9, 20 | nfand 1897 |
. . . . . . . 8
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) |
| 22 | 10, 21 | nfexd 2330 |
. . . . . . 7
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) |
| 23 | 9, 22 | nfimd 1894 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥(𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)))) |
| 24 | | simpr 484 |
. . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → 𝑤 = 𝑥) |
| 25 | 24 | eleq1d 2820 |
. . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) |
| 26 | | nfcvd 2900 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧𝑤) |
| 27 | | nfcvf2 2927 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧𝑥) |
| 28 | 27 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧𝑥) |
| 29 | 26, 28 | nfeqd 2910 |
. . . . . . . . . . . . . 14
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑧 𝑤 = 𝑥) |
| 30 | 13, 29 | nfan1 2201 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) |
| 31 | 24 | eleq2d 2821 |
. . . . . . . . . . . . . 14
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥)) |
| 32 | 31 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦) ↔ (𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
| 33 | 30, 32 | albid 2223 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦) ↔ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |
| 34 | 25, 33 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
| 35 | 34 | ex 412 |
. . . . . . . . . 10
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) ↔ (𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
| 36 | 5, 21, 35 | cbvexd 2413 |
. . . . . . . . 9
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
| 37 | 36 | adantr 480 |
. . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → (∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦)) ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
| 38 | 25, 37 | imbi12d 344 |
. . . . . . 7
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ 𝑤 = 𝑥) → ((𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) ↔ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
| 39 | 38 | ex 412 |
. . . . . 6
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑤 = 𝑥 → ((𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) ↔ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))))) |
| 40 | 5, 23, 39 | cbvald 2412 |
. . . . 5
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (∀𝑤(𝑤 ∈ 𝑦 → ∃𝑤(𝑤 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑤 → ¬ 𝑧 ∈ 𝑦))) ↔ ∀𝑥(𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
| 41 | 2, 40 | mpbii 233 |
. . . 4
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → ∀𝑥(𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
| 42 | 41 | 19.21bi 2190 |
. . 3
⊢ ((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
| 43 | 42 | ex 412 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))))) |
| 44 | | elirrv 9615 |
. . . . 5
⊢ ¬
𝑥 ∈ 𝑥 |
| 45 | | elequ2 2124 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑥 ∈ 𝑦)) |
| 46 | 44, 45 | mtbii 326 |
. . . 4
⊢ (𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
| 47 | 46 | sps 2186 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ 𝑥 ∈ 𝑦) |
| 48 | 47 | pm2.21d 121 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
| 49 | | axregndlem1 10621 |
. 2
⊢
(∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) |
| 50 | 43, 48, 49 | pm2.61ii 183 |
1
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) |