MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregcl Structured version   Visualization version   GIF version

Theorem zfregcl 9050
Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.)
Assertion
Ref Expression
zfregcl (𝐴𝑉 → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem zfregcl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2899 . . . 4 (𝑧 = 𝐴 → (𝑥𝑧𝑥𝐴))
21exbidv 1916 . . 3 (𝑧 = 𝐴 → (∃𝑥 𝑥𝑧 ↔ ∃𝑥 𝑥𝐴))
3 eleq2 2899 . . . . . 6 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
43notbid 320 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑦𝑧 ↔ ¬ 𝑦𝐴))
54ralbidv 3195 . . . 4 (𝑧 = 𝐴 → (∀𝑦𝑥 ¬ 𝑦𝑧 ↔ ∀𝑦𝑥 ¬ 𝑦𝐴))
65rexeqbi1dv 3403 . . 3 (𝑧 = 𝐴 → (∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 ↔ ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴))
72, 6imbi12d 347 . 2 (𝑧 = 𝐴 → ((∃𝑥 𝑥𝑧 → ∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧) ↔ (∃𝑥 𝑥𝐴 → ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴)))
8 nfre1 3304 . . 3 𝑥𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧
9 axreg2 9049 . . . 4 (𝑥𝑧 → ∃𝑥(𝑥𝑧 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝑧)))
10 df-ral 3141 . . . . . 6 (∀𝑦𝑥 ¬ 𝑦𝑧 ↔ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝑧))
1110rexbii 3245 . . . . 5 (∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 ↔ ∃𝑥𝑧𝑦(𝑦𝑥 → ¬ 𝑦𝑧))
12 df-rex 3142 . . . . 5 (∃𝑥𝑧𝑦(𝑦𝑥 → ¬ 𝑦𝑧) ↔ ∃𝑥(𝑥𝑧 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝑧)))
1311, 12bitr2i 278 . . . 4 (∃𝑥(𝑥𝑧 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝑧)) ↔ ∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧)
149, 13sylib 220 . . 3 (𝑥𝑧 → ∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧)
158, 14exlimi 2210 . 2 (∃𝑥 𝑥𝑧 → ∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧)
167, 15vtoclg 3566 1 (𝐴𝑉 → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1529   = wceq 1531  wex 1774  wcel 2108  wral 3136  wrex 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2170  ax-ext 2791  ax-reg 9048
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1775  df-nf 1779  df-cleq 2812  df-clel 2891  df-ral 3141  df-rex 3142
This theorem is referenced by:  zfreg  9051  elirrv  9052
  Copyright terms: Public domain W3C validator