| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfregcl | Structured version Visualization version GIF version | ||
| Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) Avoid ax-10 2142 and ax-12 2178. (Revised by TM, 31-Dec-2025.) |
| Ref | Expression |
|---|---|
| zfregcl | ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) | |
| 2 | 1 | exbidv 1921 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 𝑥 ∈ 𝑧 ↔ ∃𝑥 𝑥 ∈ 𝐴)) |
| 3 | eleq2 2817 | . . . . . 6 ⊢ (𝑧 = 𝐴 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴)) | |
| 4 | 3 | notbid 318 | . . . . 5 ⊢ (𝑧 = 𝐴 → (¬ 𝑦 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝐴)) |
| 5 | 4 | ralbidv 3152 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
| 6 | 5 | rexeqbi1dv 3302 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
| 7 | 2, 6 | imbi12d 344 | . 2 ⊢ (𝑧 = 𝐴 → ((∃𝑥 𝑥 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴))) |
| 8 | ax-reg 9484 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝑧 → ∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧))) | |
| 9 | df-ral 3045 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) | |
| 10 | 9 | rexbii 3076 | . . . 4 ⊢ (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑧 ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) |
| 11 | df-rex 3054 | . . . 4 ⊢ (∃𝑥 ∈ 𝑧 ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧) ↔ ∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧))) | |
| 12 | 10, 11 | bitr2i 276 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) ↔ ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) |
| 13 | 8, 12 | sylib 218 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) |
| 14 | 7, 13 | vtoclg 3509 | 1 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-reg 9484 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: zfreg 9488 elirrvOLD 9490 |
| Copyright terms: Public domain | W3C validator |