Step | Hyp | Ref
| Expression |
1 | | eleq2 2827 |
. . . 4
⊢ (𝑧 = 𝐴 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝐴)) |
2 | 1 | exbidv 1925 |
. . 3
⊢ (𝑧 = 𝐴 → (∃𝑥 𝑥 ∈ 𝑧 ↔ ∃𝑥 𝑥 ∈ 𝐴)) |
3 | | eleq2 2827 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐴)) |
4 | 3 | notbid 317 |
. . . . 5
⊢ (𝑧 = 𝐴 → (¬ 𝑦 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝐴)) |
5 | 4 | ralbidv 3120 |
. . . 4
⊢ (𝑧 = 𝐴 → (∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
6 | 5 | rexeqbi1dv 3332 |
. . 3
⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |
7 | 2, 6 | imbi12d 344 |
. 2
⊢ (𝑧 = 𝐴 → ((∃𝑥 𝑥 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴))) |
8 | | nfre1 3234 |
. . 3
⊢
Ⅎ𝑥∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 |
9 | | axreg2 9282 |
. . . 4
⊢ (𝑥 ∈ 𝑧 → ∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧))) |
10 | | df-ral 3068 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) |
11 | 10 | rexbii 3177 |
. . . . 5
⊢
(∃𝑥 ∈
𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧 ↔ ∃𝑥 ∈ 𝑧 ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) |
12 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑥 ∈
𝑧 ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧) ↔ ∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧))) |
13 | 11, 12 | bitr2i 275 |
. . . 4
⊢
(∃𝑥(𝑥 ∈ 𝑧 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝑧)) ↔ ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) |
14 | 9, 13 | sylib 217 |
. . 3
⊢ (𝑥 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) |
15 | 8, 14 | exlimi 2213 |
. 2
⊢
(∃𝑥 𝑥 ∈ 𝑧 → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑧) |
16 | 7, 15 | vtoclg 3495 |
1
⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) |