|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 19.23bi | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2210. (Contributed by NM, 12-Mar-1993.) | 
| Ref | Expression | 
|---|---|
| 19.23bi.1 | ⊢ (∃𝑥𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| 19.23bi | ⊢ (𝜑 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.8a 2180 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 2 | 19.23bi.1 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: nf5ri 2194 equs5eALT 2369 equs5e 2462 2mo 2647 copsexg 5495 axreg2 9634 hash1to3 14532 ustuqtop4 24254 f1omptsnlem 37338 mptsnunlem 37340 | 
| Copyright terms: Public domain | W3C validator |