| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.23bi | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2212. (Contributed by NM, 12-Mar-1993.) |
| Ref | Expression |
|---|---|
| 19.23bi.1 | ⊢ (∃𝑥𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 19.23bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.8a 2182 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
| 2 | 19.23bi.1 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: nf5ri 2196 equs5eALT 2370 equs5e 2463 2mo 2648 copsexg 5471 axreg2 9612 hash1to3 14515 ustuqtop4 24188 f1omptsnlem 37359 mptsnunlem 37361 |
| Copyright terms: Public domain | W3C validator |