Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23bi Structured version   Visualization version   GIF version

Theorem 19.23bi 2232
 Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2254. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.23bi.1 (∃𝑥𝜑𝜓)
Assertion
Ref Expression
19.23bi (𝜑𝜓)

Proof of Theorem 19.23bi
StepHypRef Expression
1 19.8a 2223 . 2 (𝜑 → ∃𝑥𝜑)
2 19.23bi.1 . 2 (∃𝑥𝜑𝜓)
31, 2syl 17 1 (𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∃wex 1878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-12 2220 This theorem depends on definitions:  df-bi 199  df-ex 1879 This theorem is referenced by:  nf5ri  2236  equs5eALT  2387  equs5e  2479  dfmo  2668  2mo  2731  copsexg  5178  axreg2  8774  hash1to3  13569  ustuqtop4  22425  f1omptsnlem  33728  mptsnunlem  33730
 Copyright terms: Public domain W3C validator