Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.23bi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2207. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
19.23bi.1 | ⊢ (∃𝑥𝜑 → 𝜓) |
Ref | Expression |
---|---|
19.23bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2176 | . 2 ⊢ (𝜑 → ∃𝑥𝜑) | |
2 | 19.23bi.1 | . 2 ⊢ (∃𝑥𝜑 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: nf5ri 2191 equs5eALT 2365 equs5e 2458 2mo 2650 copsexg 5399 axreg2 9282 hash1to3 14133 ustuqtop4 23304 f1omptsnlem 35434 mptsnunlem 35436 |
Copyright terms: Public domain | W3C validator |