MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23bi Structured version   Visualization version   GIF version

Theorem 19.23bi 2180
Description: Inference form of Theorem 19.23 of [Margaris] p. 90, see 19.23 2200. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.23bi.1 (∃𝑥𝜑𝜓)
Assertion
Ref Expression
19.23bi (𝜑𝜓)

Proof of Theorem 19.23bi
StepHypRef Expression
1 19.8a 2170 . 2 (𝜑 → ∃𝑥𝜑)
2 19.23bi.1 . 2 (∃𝑥𝜑𝜓)
31, 2syl 17 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-ex 1775
This theorem is referenced by:  nf5ri  2184  equs5eALT  2359  equs5e  2452  2mo  2637  copsexg  5497  axreg2  9636  hash1to3  14510  ustuqtop4  24240  f1omptsnlem  37043  mptsnunlem  37045
  Copyright terms: Public domain W3C validator