MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bianfd Structured version   Visualization version   GIF version

Theorem bianfd 536
Description: A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
Hypothesis
Ref Expression
bianfd.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
bianfd (𝜑 → (𝜓 ↔ (𝜓𝜒)))

Proof of Theorem bianfd
StepHypRef Expression
1 bianfd.1 . 2 (𝜑 → ¬ 𝜓)
21intnanrd 491 . 2 (𝜑 → ¬ (𝜓𝜒))
31, 22falsed 377 1 (𝜑 → (𝜓 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  eueq2  3650  eueq3  3651
  Copyright terms: Public domain W3C validator