![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: baibr 536 ceqsrexbv 3669 elrab3 3709 dfpss3 4112 rabsn 4746 elrint2 5014 opres 6019 cores 6280 fnres 6707 fvres 6939 fvmpti 7028 f1ompt 7145 fliftfun 7348 isocnv3 7368 riotaxfrd 7439 ovid 7591 nlimon 7888 limom 7919 brdifun 8793 xpcomco 9128 0sdomg 9170 0sdomgOLD 9171 f1finf1o 9333 f1finf1oOLD 9334 ordtypelem9 9595 isacn 10113 alephinit 10164 isfin5-2 10460 pwfseqlem1 10727 pwfseqlem3 10729 pwfseqlem4 10731 ltresr 11209 xrlenlt 11355 znnnlt1 12670 difrp 13095 elfz 13573 fzolb2 13723 elfzo3 13733 fzouzsplit 13751 rabssnn0fi 14037 caubnd 15407 ello12 15562 elo12 15573 bitsval2 16471 smueqlem 16536 rpexp 16769 ramcl 17076 ismon2 17795 isepi2 17802 isfull2 17978 isfth2 17982 isghm3 19257 gastacos 19350 sylow2alem2 19660 lssnle 19716 isabl2 19832 submcmn2 19881 iscyggen2 19923 iscyg3 19928 cyggexb 19941 gsum2d2 20016 dprdw 20054 dprd2da 20086 iscrng2 20279 dvdsr2 20389 dfrhm2 20500 isdomn2 20733 isdomn2OLD 20734 sdrgacs 20824 islmhm3 21050 prmirredlem 21506 chrnzr 21568 iunocv 21722 iscss2 21727 ishil2 21762 obselocv 21771 psrbaglefi 21969 mplsubrglem 22047 bastop1 23021 isclo 23116 maxlp 23176 isperf2 23181 restperf 23213 cnpnei 23293 cnntr 23304 cnprest 23318 cnprest2 23319 lmres 23329 iscnrm2 23367 ist0-2 23373 ist1-2 23376 ishaus2 23380 tgcmp 23430 cmpfi 23437 dfconn2 23448 t1connperf 23465 subislly 23510 tx1cn 23638 tx2cn 23639 xkopt 23684 xkoinjcn 23716 ist0-4 23758 trfil2 23916 fin1aufil 23961 flimtopon 23999 elflim 24000 fclstopon 24041 isfcls2 24042 alexsubALTlem4 24079 ptcmplem3 24083 tgphaus 24146 xmetec 24465 prdsbl 24525 blval2 24596 isnvc2 24741 isnghm2 24766 isnmhm2 24794 0nmhm 24797 xrtgioo 24847 cncfcnvcn 24971 evth 25010 nmhmcn 25172 cmsss 25404 lssbn 25405 srabn 25413 ishl2 25423 ivthlem2 25506 0plef 25726 itg2monolem1 25805 itg2cnlem1 25816 itg2cnlem2 25817 ellimc2 25932 dvne0 26070 ellogdm 26699 dcubic 26907 atans2 26992 amgm 27052 ftalem3 27136 pclogsum 27277 dchrelbas3 27300 lgsabs1 27398 dchrvmaeq0 27566 rpvmasum2 27574 tgjustf 28499 clwwlkwwlksb 30086 ajval 30893 bnsscmcl 30900 axhcompl-zf 31030 seq1hcau 31219 hlim2 31224 issh3 31251 lnopcnre 32071 dmdbr2 32335 elatcv0 32373 iunsnima 32640 iunsnima2 32641 ecxpid 33354 ssdifidlprm 33451 ist0cld 33779 1stmbfm 34225 2ndmbfm 34226 eulerpartlemd 34331 oddprm2 34632 lfuhgr 35085 cvmlift2lem12 35282 bj-rest10 37054 topdifinfeq 37316 finxpsuclem 37363 curunc 37562 istotbnd2 37730 sstotbnd2 37734 isbnd3b 37745 totbndbnd 37749 br1cnvres 38225 ecres2 38235 fimgmcyc 42489 islnr2 43071 areaquad 43177 tfsconcat0i 43307 afv2res 47154 oddm1evenALTV 47549 oddp1evenALTV 47550 iscnrm3v 48633 isprsd 48635 joindm2 48648 meetdm2 48650 postcposALT 48748 postc 48749 |
Copyright terms: Public domain | W3C validator |