| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: baibr 536 ceqsrexbv 3611 elrab3 3648 dfpss3 4039 rabsn 4674 elrint2 4940 opres 5938 cores 6196 fnres 6608 fvres 6841 fvmpti 6928 f1ompt 7044 fliftfun 7246 isocnv3 7266 riotaxfrd 7337 ovid 7487 nlimon 7781 limom 7812 brdifun 8652 elecreseq 8671 xpcomco 8980 0sdomg 9019 f1finf1o 9157 ordtypelem9 9412 isacn 9932 alephinit 9983 isfin5-2 10279 pwfseqlem1 10546 pwfseqlem3 10548 pwfseqlem4 10550 ltresr 11028 xrlenlt 11174 znnnlt1 12496 difrp 12927 elfz 13410 fzolb2 13563 elfzo3 13573 fzouzsplit 13591 rabssnn0fi 13890 caubnd 15263 ello12 15420 elo12 15431 bitsval2 16333 smueqlem 16398 rpexp 16630 ramcl 16938 ismon2 17638 isepi2 17645 isfull2 17817 isfth2 17821 isghm3 19127 gastacos 19220 sylow2alem2 19528 lssnle 19584 isabl2 19700 submcmn2 19749 iscyggen2 19791 iscyg3 19796 cyggexb 19809 gsum2d2 19884 dprdw 19922 dprd2da 19954 iscrng2 20168 dvdsr2 20279 dfrhm2 20390 isdomn2 20624 isdomn2OLD 20625 sdrgacs 20714 islmhm3 20960 prmirredlem 21407 chrnzr 21465 iunocv 21616 iscss2 21621 ishil2 21654 obselocv 21663 psrbaglefi 21861 mplsubrglem 21939 bastop1 22906 isclo 23000 maxlp 23060 isperf2 23065 restperf 23097 cnpnei 23177 cnntr 23188 cnprest 23202 cnprest2 23203 lmres 23213 iscnrm2 23251 ist0-2 23257 ist1-2 23260 ishaus2 23264 tgcmp 23314 cmpfi 23321 dfconn2 23332 t1connperf 23349 subislly 23394 tx1cn 23522 tx2cn 23523 xkopt 23568 xkoinjcn 23600 ist0-4 23642 trfil2 23800 fin1aufil 23845 flimtopon 23883 elflim 23884 fclstopon 23925 isfcls2 23926 alexsubALTlem4 23963 ptcmplem3 23967 tgphaus 24030 xmetec 24347 prdsbl 24404 blval2 24475 isnvc2 24612 isnghm2 24637 isnmhm2 24665 0nmhm 24668 xrtgioo 24720 cncfcnvcn 24844 evth 24883 nmhmcn 25045 cmsss 25276 lssbn 25277 srabn 25285 ishl2 25295 ivthlem2 25378 0plef 25598 itg2monolem1 25676 itg2cnlem1 25687 itg2cnlem2 25688 ellimc2 25803 dvne0 25941 ellogdm 26573 dcubic 26781 atans2 26866 amgm 26926 ftalem3 27010 pclogsum 27151 dchrelbas3 27174 lgsabs1 27272 dchrvmaeq0 27440 rpvmasum2 27448 tgjustf 28449 clwwlkwwlksb 30029 ajval 30836 bnsscmcl 30843 axhcompl-zf 30973 seq1hcau 31162 hlim2 31167 issh3 31194 lnopcnre 32014 dmdbr2 32278 elatcv0 32316 iunsnima 32596 iunsnima2 32597 ecxpid 33321 ssdifidlprm 33418 ist0cld 33841 1stmbfm 34268 2ndmbfm 34269 eulerpartlemd 34374 oddprm2 34663 lfuhgr 35150 cvmlift2lem12 35346 bj-rest10 37121 topdifinfeq 37383 finxpsuclem 37430 curunc 37641 istotbnd2 37809 sstotbnd2 37813 isbnd3b 37824 totbndbnd 37828 br1cnvres 38303 fimgmcyc 42566 islnr2 43146 areaquad 43248 tfsconcat0i 43377 afv2res 47269 oddm1evenALTV 47705 oddp1evenALTV 47706 iscnrm3v 48983 isprsd 48985 joindm2 48998 meetdm2 49000 postcposALT 49599 postc 49600 |
| Copyright terms: Public domain | W3C validator |