Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 532 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 293 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: baibr 540 ceqsrexbv 3553 elrab3 3589 dfpss3 3977 rabsn 4612 elrint2 4880 opres 5835 cores 6082 elpredg 6143 fnres 6463 fvres 6693 fvmpti 6774 f1ompt 6885 fliftfun 7078 isocnv3 7098 riotaxfrd 7162 ovid 7306 nlimon 7585 limom 7614 brdifun 8349 xpcomco 8656 0sdomg 8696 f1finf1o 8823 ordtypelem9 9063 isacn 9544 alephinit 9595 isfin5-2 9891 pwfseqlem1 10158 pwfseqlem3 10160 pwfseqlem4 10162 ltresr 10640 xrlenlt 10784 znnnlt1 12090 difrp 12510 elfz 12987 fzolb2 13136 elfzo3 13145 fzouzsplit 13163 rabssnn0fi 13445 caubnd 14808 ello12 14963 elo12 14974 bitsval2 15868 smueqlem 15933 rpexp 16163 ramcl 16465 ismon2 17109 isepi2 17116 isfull2 17286 isfth2 17290 isghm3 18477 gastacos 18558 sylow2alem2 18861 lssnle 18918 isabl2 19033 submcmn2 19078 iscyggen2 19119 iscyg3 19124 cyggexb 19138 gsum2d2 19213 dprdw 19251 dprd2da 19283 iscrng2 19435 dvdsr2 19519 dfrhm2 19591 sdrgacs 19699 islmhm3 19919 isdomn2 20191 prmirredlem 20313 chrnzr 20349 iunocv 20497 iscss2 20502 ishil2 20535 obselocv 20544 psrbaglefi 20745 psrbaglefiOLD 20746 mplsubrglem 20820 bastop1 21744 isclo 21838 maxlp 21898 isperf2 21903 restperf 21935 cnpnei 22015 cnntr 22026 cnprest 22040 cnprest2 22041 lmres 22051 iscnrm2 22089 ist0-2 22095 ist1-2 22098 ishaus2 22102 tgcmp 22152 cmpfi 22159 dfconn2 22170 t1connperf 22187 subislly 22232 tx1cn 22360 tx2cn 22361 xkopt 22406 xkoinjcn 22438 ist0-4 22480 trfil2 22638 fin1aufil 22683 flimtopon 22721 elflim 22722 fclstopon 22763 isfcls2 22764 alexsubALTlem4 22801 ptcmplem3 22805 tgphaus 22868 xmetec 23187 prdsbl 23244 blval2 23315 isnvc2 23452 isnghm2 23477 isnmhm2 23505 0nmhm 23508 xrtgioo 23558 cncfcnvcn 23677 evth 23711 nmhmcn 23872 cmsss 24103 lssbn 24104 srabn 24112 ishl2 24122 ivthlem2 24204 0plef 24424 itg2monolem1 24503 itg2cnlem1 24514 itg2cnlem2 24515 ellimc2 24629 dvne0 24763 ellogdm 25382 dcubic 25584 atans2 25669 amgm 25728 ftalem3 25812 pclogsum 25951 dchrelbas3 25974 lgsabs1 26072 dchrvmaeq0 26240 rpvmasum2 26248 tgjustf 26419 clwwlkwwlksb 27991 ajval 28796 bnsscmcl 28803 axhcompl-zf 28933 seq1hcau 29122 hlim2 29127 issh3 29154 lnopcnre 29974 dmdbr2 30238 elatcv0 30276 iunsnima 30532 iunsnima2 30533 ecxpid 31128 ist0cld 31355 1stmbfm 31797 2ndmbfm 31798 eulerpartlemd 31903 oddprm2 32205 lfuhgr 32650 cvmlift2lem12 32847 bj-rest10 34880 topdifinfeq 35144 finxpsuclem 35191 curunc 35382 istotbnd2 35551 sstotbnd2 35555 isbnd3b 35566 totbndbnd 35570 ecres2 36037 islnr2 40511 areaquad 40619 afv2res 44264 oddm1evenALTV 44661 oddp1evenALTV 44662 iscnrm3v 45769 isprsd 45771 |
Copyright terms: Public domain | W3C validator |