Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 289 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: baibr 536 ceqsrexbv 3579 elrab3 3618 dfpss3 4017 rabsn 4654 elrint2 4920 opres 5890 cores 6142 fnres 6543 fvres 6775 fvmpti 6856 f1ompt 6967 fliftfun 7163 isocnv3 7183 riotaxfrd 7247 ovid 7392 nlimon 7673 limom 7703 brdifun 8485 xpcomco 8802 0sdomg 8842 f1finf1o 8975 ordtypelem9 9215 isacn 9731 alephinit 9782 isfin5-2 10078 pwfseqlem1 10345 pwfseqlem3 10347 pwfseqlem4 10349 ltresr 10827 xrlenlt 10971 znnnlt1 12277 difrp 12697 elfz 13174 fzolb2 13323 elfzo3 13332 fzouzsplit 13350 rabssnn0fi 13634 caubnd 14998 ello12 15153 elo12 15164 bitsval2 16060 smueqlem 16125 rpexp 16355 ramcl 16658 ismon2 17363 isepi2 17370 isfull2 17543 isfth2 17547 isghm3 18750 gastacos 18831 sylow2alem2 19138 lssnle 19195 isabl2 19310 submcmn2 19355 iscyggen2 19396 iscyg3 19401 cyggexb 19415 gsum2d2 19490 dprdw 19528 dprd2da 19560 iscrng2 19717 dvdsr2 19804 dfrhm2 19876 sdrgacs 19984 islmhm3 20205 isdomn2 20483 prmirredlem 20606 chrnzr 20646 iunocv 20798 iscss2 20803 ishil2 20836 obselocv 20845 psrbaglefi 21045 psrbaglefiOLD 21046 mplsubrglem 21120 bastop1 22051 isclo 22146 maxlp 22206 isperf2 22211 restperf 22243 cnpnei 22323 cnntr 22334 cnprest 22348 cnprest2 22349 lmres 22359 iscnrm2 22397 ist0-2 22403 ist1-2 22406 ishaus2 22410 tgcmp 22460 cmpfi 22467 dfconn2 22478 t1connperf 22495 subislly 22540 tx1cn 22668 tx2cn 22669 xkopt 22714 xkoinjcn 22746 ist0-4 22788 trfil2 22946 fin1aufil 22991 flimtopon 23029 elflim 23030 fclstopon 23071 isfcls2 23072 alexsubALTlem4 23109 ptcmplem3 23113 tgphaus 23176 xmetec 23495 prdsbl 23553 blval2 23624 isnvc2 23769 isnghm2 23794 isnmhm2 23822 0nmhm 23825 xrtgioo 23875 cncfcnvcn 23994 evth 24028 nmhmcn 24189 cmsss 24420 lssbn 24421 srabn 24429 ishl2 24439 ivthlem2 24521 0plef 24741 itg2monolem1 24820 itg2cnlem1 24831 itg2cnlem2 24832 ellimc2 24946 dvne0 25080 ellogdm 25699 dcubic 25901 atans2 25986 amgm 26045 ftalem3 26129 pclogsum 26268 dchrelbas3 26291 lgsabs1 26389 dchrvmaeq0 26557 rpvmasum2 26565 tgjustf 26738 clwwlkwwlksb 28319 ajval 29124 bnsscmcl 29131 axhcompl-zf 29261 seq1hcau 29450 hlim2 29455 issh3 29482 lnopcnre 30302 dmdbr2 30566 elatcv0 30604 iunsnima 30859 iunsnima2 30860 ecxpid 31458 ist0cld 31685 1stmbfm 32127 2ndmbfm 32128 eulerpartlemd 32233 oddprm2 32535 lfuhgr 32979 cvmlift2lem12 33176 bj-rest10 35186 topdifinfeq 35448 finxpsuclem 35495 curunc 35686 istotbnd2 35855 sstotbnd2 35859 isbnd3b 35870 totbndbnd 35874 ecres2 36341 islnr2 40855 areaquad 40963 afv2res 44618 oddm1evenALTV 45015 oddp1evenALTV 45016 iscnrm3v 46135 isprsd 46137 joindm2 46150 meetdm2 46152 postcposALT 46248 postc 46249 |
Copyright terms: Public domain | W3C validator |