![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 529 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 289 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: baibr 537 ceqsrexbv 3643 elrab3 3683 dfpss3 4085 rabsn 4724 elrint2 4995 opres 5989 cores 6245 fnres 6674 fvres 6907 fvmpti 6994 f1ompt 7107 fliftfun 7305 isocnv3 7325 riotaxfrd 7396 ovid 7545 nlimon 7836 limom 7867 brdifun 8728 xpcomco 9058 0sdomg 9100 0sdomgOLD 9101 f1finf1o 9267 f1finf1oOLD 9268 ordtypelem9 9517 isacn 10035 alephinit 10086 isfin5-2 10382 pwfseqlem1 10649 pwfseqlem3 10651 pwfseqlem4 10653 ltresr 11131 xrlenlt 11275 znnnlt1 12585 difrp 13008 elfz 13486 fzolb2 13635 elfzo3 13645 fzouzsplit 13663 rabssnn0fi 13947 caubnd 15301 ello12 15456 elo12 15467 bitsval2 16362 smueqlem 16427 rpexp 16655 ramcl 16958 ismon2 17677 isepi2 17684 isfull2 17858 isfth2 17862 isghm3 19087 gastacos 19168 sylow2alem2 19480 lssnle 19536 isabl2 19652 submcmn2 19701 iscyggen2 19743 iscyg3 19748 cyggexb 19761 gsum2d2 19836 dprdw 19874 dprd2da 19906 iscrng2 20068 dvdsr2 20169 dfrhm2 20245 sdrgacs 20409 islmhm3 20631 isdomn2 20907 prmirredlem 21033 chrnzr 21073 iunocv 21225 iscss2 21230 ishil2 21265 obselocv 21274 psrbaglefi 21476 psrbaglefiOLD 21477 mplsubrglem 21554 bastop1 22487 isclo 22582 maxlp 22642 isperf2 22647 restperf 22679 cnpnei 22759 cnntr 22770 cnprest 22784 cnprest2 22785 lmres 22795 iscnrm2 22833 ist0-2 22839 ist1-2 22842 ishaus2 22846 tgcmp 22896 cmpfi 22903 dfconn2 22914 t1connperf 22931 subislly 22976 tx1cn 23104 tx2cn 23105 xkopt 23150 xkoinjcn 23182 ist0-4 23224 trfil2 23382 fin1aufil 23427 flimtopon 23465 elflim 23466 fclstopon 23507 isfcls2 23508 alexsubALTlem4 23545 ptcmplem3 23549 tgphaus 23612 xmetec 23931 prdsbl 23991 blval2 24062 isnvc2 24207 isnghm2 24232 isnmhm2 24260 0nmhm 24263 xrtgioo 24313 cncfcnvcn 24432 evth 24466 nmhmcn 24627 cmsss 24859 lssbn 24860 srabn 24868 ishl2 24878 ivthlem2 24960 0plef 25180 itg2monolem1 25259 itg2cnlem1 25270 itg2cnlem2 25271 ellimc2 25385 dvne0 25519 ellogdm 26138 dcubic 26340 atans2 26425 amgm 26484 ftalem3 26568 pclogsum 26707 dchrelbas3 26730 lgsabs1 26828 dchrvmaeq0 26996 rpvmasum2 27004 tgjustf 27713 clwwlkwwlksb 29296 ajval 30101 bnsscmcl 30108 axhcompl-zf 30238 seq1hcau 30427 hlim2 30432 issh3 30459 lnopcnre 31279 dmdbr2 31543 elatcv0 31581 iunsnima 31834 iunsnima2 31835 ecxpid 32460 ist0cld 32801 1stmbfm 33247 2ndmbfm 33248 eulerpartlemd 33353 oddprm2 33655 lfuhgr 34096 cvmlift2lem12 34293 bj-rest10 35957 topdifinfeq 36219 finxpsuclem 36266 curunc 36458 istotbnd2 36626 sstotbnd2 36630 isbnd3b 36641 totbndbnd 36645 br1cnvres 37125 ecres2 37135 islnr2 41841 areaquad 41950 tfsconcat0i 42080 afv2res 45933 oddm1evenALTV 46329 oddp1evenALTV 46330 iscnrm3v 47539 isprsd 47541 joindm2 47554 meetdm2 47556 postcposALT 47654 postc 47655 |
Copyright terms: Public domain | W3C validator |