| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: baibr 536 ceqsrexbv 3625 elrab3 3663 dfpss3 4055 rabsn 4688 elrint2 4957 opres 5963 cores 6225 fnres 6648 fvres 6880 fvmpti 6970 f1ompt 7086 fliftfun 7290 isocnv3 7310 riotaxfrd 7381 ovid 7533 nlimon 7830 limom 7861 brdifun 8704 elecreseq 8723 xpcomco 9036 0sdomg 9076 f1finf1o 9223 f1finf1oOLD 9224 ordtypelem9 9486 isacn 10004 alephinit 10055 isfin5-2 10351 pwfseqlem1 10618 pwfseqlem3 10620 pwfseqlem4 10622 ltresr 11100 xrlenlt 11246 znnnlt1 12567 difrp 12998 elfz 13481 fzolb2 13634 elfzo3 13644 fzouzsplit 13662 rabssnn0fi 13958 caubnd 15332 ello12 15489 elo12 15500 bitsval2 16402 smueqlem 16467 rpexp 16699 ramcl 17007 ismon2 17703 isepi2 17710 isfull2 17882 isfth2 17886 isghm3 19156 gastacos 19249 sylow2alem2 19555 lssnle 19611 isabl2 19727 submcmn2 19776 iscyggen2 19818 iscyg3 19823 cyggexb 19836 gsum2d2 19911 dprdw 19949 dprd2da 19981 iscrng2 20168 dvdsr2 20279 dfrhm2 20390 isdomn2 20627 isdomn2OLD 20628 sdrgacs 20717 islmhm3 20942 prmirredlem 21389 chrnzr 21447 iunocv 21597 iscss2 21602 ishil2 21635 obselocv 21644 psrbaglefi 21842 mplsubrglem 21920 bastop1 22887 isclo 22981 maxlp 23041 isperf2 23046 restperf 23078 cnpnei 23158 cnntr 23169 cnprest 23183 cnprest2 23184 lmres 23194 iscnrm2 23232 ist0-2 23238 ist1-2 23241 ishaus2 23245 tgcmp 23295 cmpfi 23302 dfconn2 23313 t1connperf 23330 subislly 23375 tx1cn 23503 tx2cn 23504 xkopt 23549 xkoinjcn 23581 ist0-4 23623 trfil2 23781 fin1aufil 23826 flimtopon 23864 elflim 23865 fclstopon 23906 isfcls2 23907 alexsubALTlem4 23944 ptcmplem3 23948 tgphaus 24011 xmetec 24329 prdsbl 24386 blval2 24457 isnvc2 24594 isnghm2 24619 isnmhm2 24647 0nmhm 24650 xrtgioo 24702 cncfcnvcn 24826 evth 24865 nmhmcn 25027 cmsss 25258 lssbn 25259 srabn 25267 ishl2 25277 ivthlem2 25360 0plef 25580 itg2monolem1 25658 itg2cnlem1 25669 itg2cnlem2 25670 ellimc2 25785 dvne0 25923 ellogdm 26555 dcubic 26763 atans2 26848 amgm 26908 ftalem3 26992 pclogsum 27133 dchrelbas3 27156 lgsabs1 27254 dchrvmaeq0 27422 rpvmasum2 27430 tgjustf 28407 clwwlkwwlksb 29990 ajval 30797 bnsscmcl 30804 axhcompl-zf 30934 seq1hcau 31123 hlim2 31128 issh3 31155 lnopcnre 31975 dmdbr2 32239 elatcv0 32277 iunsnima 32553 iunsnima2 32554 ecxpid 33339 ssdifidlprm 33436 ist0cld 33830 1stmbfm 34258 2ndmbfm 34259 eulerpartlemd 34364 oddprm2 34653 lfuhgr 35112 cvmlift2lem12 35308 bj-rest10 37083 topdifinfeq 37345 finxpsuclem 37392 curunc 37603 istotbnd2 37771 sstotbnd2 37775 isbnd3b 37786 totbndbnd 37790 br1cnvres 38265 fimgmcyc 42529 islnr2 43110 areaquad 43212 tfsconcat0i 43341 afv2res 47244 oddm1evenALTV 47680 oddp1evenALTV 47681 iscnrm3v 48945 isprsd 48947 joindm2 48960 meetdm2 48962 postcposALT 49561 postc 49562 |
| Copyright terms: Public domain | W3C validator |