Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 529 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: baibr 537 ceqsrexbv 3586 elrab3 3625 dfpss3 4021 rabsn 4657 elrint2 4923 opres 5901 cores 6153 fnres 6559 fvres 6793 fvmpti 6874 f1ompt 6985 fliftfun 7183 isocnv3 7203 riotaxfrd 7267 ovid 7414 nlimon 7698 limom 7728 brdifun 8527 xpcomco 8849 0sdomg 8891 0sdomgOLD 8892 f1finf1o 9046 ordtypelem9 9285 isacn 9800 alephinit 9851 isfin5-2 10147 pwfseqlem1 10414 pwfseqlem3 10416 pwfseqlem4 10418 ltresr 10896 xrlenlt 11040 znnnlt1 12347 difrp 12768 elfz 13245 fzolb2 13394 elfzo3 13404 fzouzsplit 13422 rabssnn0fi 13706 caubnd 15070 ello12 15225 elo12 15236 bitsval2 16132 smueqlem 16197 rpexp 16427 ramcl 16730 ismon2 17446 isepi2 17453 isfull2 17627 isfth2 17631 isghm3 18835 gastacos 18916 sylow2alem2 19223 lssnle 19280 isabl2 19395 submcmn2 19440 iscyggen2 19481 iscyg3 19486 cyggexb 19500 gsum2d2 19575 dprdw 19613 dprd2da 19645 iscrng2 19802 dvdsr2 19889 dfrhm2 19961 sdrgacs 20069 islmhm3 20290 isdomn2 20570 prmirredlem 20694 chrnzr 20734 iunocv 20886 iscss2 20891 ishil2 20926 obselocv 20935 psrbaglefi 21135 psrbaglefiOLD 21136 mplsubrglem 21210 bastop1 22143 isclo 22238 maxlp 22298 isperf2 22303 restperf 22335 cnpnei 22415 cnntr 22426 cnprest 22440 cnprest2 22441 lmres 22451 iscnrm2 22489 ist0-2 22495 ist1-2 22498 ishaus2 22502 tgcmp 22552 cmpfi 22559 dfconn2 22570 t1connperf 22587 subislly 22632 tx1cn 22760 tx2cn 22761 xkopt 22806 xkoinjcn 22838 ist0-4 22880 trfil2 23038 fin1aufil 23083 flimtopon 23121 elflim 23122 fclstopon 23163 isfcls2 23164 alexsubALTlem4 23201 ptcmplem3 23205 tgphaus 23268 xmetec 23587 prdsbl 23647 blval2 23718 isnvc2 23863 isnghm2 23888 isnmhm2 23916 0nmhm 23919 xrtgioo 23969 cncfcnvcn 24088 evth 24122 nmhmcn 24283 cmsss 24515 lssbn 24516 srabn 24524 ishl2 24534 ivthlem2 24616 0plef 24836 itg2monolem1 24915 itg2cnlem1 24926 itg2cnlem2 24927 ellimc2 25041 dvne0 25175 ellogdm 25794 dcubic 25996 atans2 26081 amgm 26140 ftalem3 26224 pclogsum 26363 dchrelbas3 26386 lgsabs1 26484 dchrvmaeq0 26652 rpvmasum2 26660 tgjustf 26834 clwwlkwwlksb 28418 ajval 29223 bnsscmcl 29230 axhcompl-zf 29360 seq1hcau 29549 hlim2 29554 issh3 29581 lnopcnre 30401 dmdbr2 30665 elatcv0 30703 iunsnima 30958 iunsnima2 30959 ecxpid 31556 ist0cld 31783 1stmbfm 32227 2ndmbfm 32228 eulerpartlemd 32333 oddprm2 32635 lfuhgr 33079 cvmlift2lem12 33276 bj-rest10 35259 topdifinfeq 35521 finxpsuclem 35568 curunc 35759 istotbnd2 35928 sstotbnd2 35932 isbnd3b 35943 totbndbnd 35947 ecres2 36414 islnr2 40939 areaquad 41047 afv2res 44731 oddm1evenALTV 45127 oddp1evenALTV 45128 iscnrm3v 46247 isprsd 46249 joindm2 46262 meetdm2 46264 postcposALT 46362 postc 46363 |
Copyright terms: Public domain | W3C validator |