![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: baibr 536 ceqsrexbv 3655 elrab3 3695 dfpss3 4098 rabsn 4725 elrint2 4994 opres 6009 cores 6270 fnres 6695 fvres 6925 fvmpti 7014 f1ompt 7130 fliftfun 7331 isocnv3 7351 riotaxfrd 7421 ovid 7573 nlimon 7871 limom 7902 brdifun 8773 xpcomco 9100 0sdomg 9142 0sdomgOLD 9143 f1finf1o 9302 f1finf1oOLD 9303 ordtypelem9 9563 isacn 10081 alephinit 10132 isfin5-2 10428 pwfseqlem1 10695 pwfseqlem3 10697 pwfseqlem4 10699 ltresr 11177 xrlenlt 11323 znnnlt1 12641 difrp 13070 elfz 13549 fzolb2 13702 elfzo3 13712 fzouzsplit 13730 rabssnn0fi 14023 caubnd 15393 ello12 15548 elo12 15559 bitsval2 16458 smueqlem 16523 rpexp 16755 ramcl 17062 ismon2 17781 isepi2 17788 isfull2 17964 isfth2 17968 isghm3 19247 gastacos 19340 sylow2alem2 19650 lssnle 19706 isabl2 19822 submcmn2 19871 iscyggen2 19913 iscyg3 19918 cyggexb 19931 gsum2d2 20006 dprdw 20044 dprd2da 20076 iscrng2 20269 dvdsr2 20379 dfrhm2 20490 isdomn2 20727 isdomn2OLD 20728 sdrgacs 20818 islmhm3 21044 prmirredlem 21500 chrnzr 21562 iunocv 21716 iscss2 21721 ishil2 21756 obselocv 21765 psrbaglefi 21963 mplsubrglem 22041 bastop1 23015 isclo 23110 maxlp 23170 isperf2 23175 restperf 23207 cnpnei 23287 cnntr 23298 cnprest 23312 cnprest2 23313 lmres 23323 iscnrm2 23361 ist0-2 23367 ist1-2 23370 ishaus2 23374 tgcmp 23424 cmpfi 23431 dfconn2 23442 t1connperf 23459 subislly 23504 tx1cn 23632 tx2cn 23633 xkopt 23678 xkoinjcn 23710 ist0-4 23752 trfil2 23910 fin1aufil 23955 flimtopon 23993 elflim 23994 fclstopon 24035 isfcls2 24036 alexsubALTlem4 24073 ptcmplem3 24077 tgphaus 24140 xmetec 24459 prdsbl 24519 blval2 24590 isnvc2 24735 isnghm2 24760 isnmhm2 24788 0nmhm 24791 xrtgioo 24841 cncfcnvcn 24965 evth 25004 nmhmcn 25166 cmsss 25398 lssbn 25399 srabn 25407 ishl2 25417 ivthlem2 25500 0plef 25720 itg2monolem1 25799 itg2cnlem1 25810 itg2cnlem2 25811 ellimc2 25926 dvne0 26064 ellogdm 26695 dcubic 26903 atans2 26988 amgm 27048 ftalem3 27132 pclogsum 27273 dchrelbas3 27296 lgsabs1 27394 dchrvmaeq0 27562 rpvmasum2 27570 tgjustf 28495 clwwlkwwlksb 30082 ajval 30889 bnsscmcl 30896 axhcompl-zf 31026 seq1hcau 31215 hlim2 31220 issh3 31247 lnopcnre 32067 dmdbr2 32331 elatcv0 32369 iunsnima 32637 iunsnima2 32638 ecxpid 33368 ssdifidlprm 33465 ist0cld 33793 1stmbfm 34241 2ndmbfm 34242 eulerpartlemd 34347 oddprm2 34648 lfuhgr 35101 cvmlift2lem12 35298 bj-rest10 37070 topdifinfeq 37332 finxpsuclem 37379 curunc 37588 istotbnd2 37756 sstotbnd2 37760 isbnd3b 37771 totbndbnd 37775 br1cnvres 38250 ecres2 38260 fimgmcyc 42520 islnr2 43102 areaquad 43204 tfsconcat0i 43334 afv2res 47188 oddm1evenALTV 47599 oddp1evenALTV 47600 iscnrm3v 48749 isprsd 48751 joindm2 48764 meetdm2 48766 postcposALT 48883 postc 48884 |
Copyright terms: Public domain | W3C validator |