| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: baibr 536 ceqsrexbv 3635 elrab3 3672 dfpss3 4064 rabsn 4697 elrint2 4966 opres 5976 cores 6238 fnres 6664 fvres 6894 fvmpti 6984 f1ompt 7100 fliftfun 7304 isocnv3 7324 riotaxfrd 7394 ovid 7546 nlimon 7844 limom 7875 brdifun 8747 xpcomco 9074 0sdomg 9116 0sdomgOLD 9117 f1finf1o 9275 f1finf1oOLD 9276 ordtypelem9 9538 isacn 10056 alephinit 10107 isfin5-2 10403 pwfseqlem1 10670 pwfseqlem3 10672 pwfseqlem4 10674 ltresr 11152 xrlenlt 11298 znnnlt1 12617 difrp 13045 elfz 13528 fzolb2 13681 elfzo3 13691 fzouzsplit 13709 rabssnn0fi 14002 caubnd 15375 ello12 15530 elo12 15541 bitsval2 16442 smueqlem 16507 rpexp 16739 ramcl 17047 ismon2 17745 isepi2 17752 isfull2 17924 isfth2 17928 isghm3 19198 gastacos 19291 sylow2alem2 19597 lssnle 19653 isabl2 19769 submcmn2 19818 iscyggen2 19860 iscyg3 19865 cyggexb 19878 gsum2d2 19953 dprdw 19991 dprd2da 20023 iscrng2 20210 dvdsr2 20321 dfrhm2 20432 isdomn2 20669 isdomn2OLD 20670 sdrgacs 20759 islmhm3 20984 prmirredlem 21431 chrnzr 21489 iunocv 21639 iscss2 21644 ishil2 21677 obselocv 21686 psrbaglefi 21884 mplsubrglem 21962 bastop1 22929 isclo 23023 maxlp 23083 isperf2 23088 restperf 23120 cnpnei 23200 cnntr 23211 cnprest 23225 cnprest2 23226 lmres 23236 iscnrm2 23274 ist0-2 23280 ist1-2 23283 ishaus2 23287 tgcmp 23337 cmpfi 23344 dfconn2 23355 t1connperf 23372 subislly 23417 tx1cn 23545 tx2cn 23546 xkopt 23591 xkoinjcn 23623 ist0-4 23665 trfil2 23823 fin1aufil 23868 flimtopon 23906 elflim 23907 fclstopon 23948 isfcls2 23949 alexsubALTlem4 23986 ptcmplem3 23990 tgphaus 24053 xmetec 24371 prdsbl 24428 blval2 24499 isnvc2 24636 isnghm2 24661 isnmhm2 24689 0nmhm 24692 xrtgioo 24744 cncfcnvcn 24868 evth 24907 nmhmcn 25069 cmsss 25301 lssbn 25302 srabn 25310 ishl2 25320 ivthlem2 25403 0plef 25623 itg2monolem1 25701 itg2cnlem1 25712 itg2cnlem2 25713 ellimc2 25828 dvne0 25966 ellogdm 26598 dcubic 26806 atans2 26891 amgm 26951 ftalem3 27035 pclogsum 27176 dchrelbas3 27199 lgsabs1 27297 dchrvmaeq0 27465 rpvmasum2 27473 tgjustf 28398 clwwlkwwlksb 29981 ajval 30788 bnsscmcl 30795 axhcompl-zf 30925 seq1hcau 31114 hlim2 31119 issh3 31146 lnopcnre 31966 dmdbr2 32230 elatcv0 32268 iunsnima 32544 iunsnima2 32545 ecxpid 33322 ssdifidlprm 33419 ist0cld 33810 1stmbfm 34238 2ndmbfm 34239 eulerpartlemd 34344 oddprm2 34633 lfuhgr 35086 cvmlift2lem12 35282 bj-rest10 37052 topdifinfeq 37314 finxpsuclem 37361 curunc 37572 istotbnd2 37740 sstotbnd2 37744 isbnd3b 37755 totbndbnd 37759 br1cnvres 38233 ecres2 38243 fimgmcyc 42504 islnr2 43085 areaquad 43187 tfsconcat0i 43316 afv2res 47216 oddm1evenALTV 47637 oddp1evenALTV 47638 iscnrm3v 48875 isprsd 48877 joindm2 48890 meetdm2 48892 postcposALT 49393 postc 49394 |
| Copyright terms: Public domain | W3C validator |