| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: baibr 536 ceqsrexbv 3607 elrab3 3644 dfpss3 4038 rabsn 4673 elrint2 4940 opres 5942 cores 6201 fnres 6613 fvres 6847 fvmpti 6934 f1ompt 7050 fliftfun 7252 isocnv3 7272 riotaxfrd 7343 ovid 7493 nlimon 7787 limom 7818 brdifun 8658 elecreseq 8677 xpcomco 8987 0sdomg 9026 f1finf1o 9164 ordtypelem9 9419 isacn 9942 alephinit 9993 isfin5-2 10289 pwfseqlem1 10556 pwfseqlem3 10558 pwfseqlem4 10560 ltresr 11038 xrlenlt 11184 znnnlt1 12505 difrp 12932 elfz 13415 fzolb2 13568 elfzo3 13578 fzouzsplit 13596 rabssnn0fi 13895 caubnd 15268 ello12 15425 elo12 15436 bitsval2 16338 smueqlem 16403 rpexp 16635 ramcl 16943 ismon2 17643 isepi2 17650 isfull2 17822 isfth2 17826 isghm3 19131 gastacos 19224 sylow2alem2 19532 lssnle 19588 isabl2 19704 submcmn2 19753 iscyggen2 19795 iscyg3 19800 cyggexb 19813 gsum2d2 19888 dprdw 19926 dprd2da 19958 iscrng2 20172 dvdsr2 20283 dfrhm2 20394 isdomn2 20628 isdomn2OLD 20629 sdrgacs 20718 islmhm3 20964 prmirredlem 21411 chrnzr 21469 iunocv 21620 iscss2 21625 ishil2 21658 obselocv 21667 psrbaglefi 21865 mplsubrglem 21942 bastop1 22909 isclo 23003 maxlp 23063 isperf2 23068 restperf 23100 cnpnei 23180 cnntr 23191 cnprest 23205 cnprest2 23206 lmres 23216 iscnrm2 23254 ist0-2 23260 ist1-2 23263 ishaus2 23267 tgcmp 23317 cmpfi 23324 dfconn2 23335 t1connperf 23352 subislly 23397 tx1cn 23525 tx2cn 23526 xkopt 23571 xkoinjcn 23603 ist0-4 23645 trfil2 23803 fin1aufil 23848 flimtopon 23886 elflim 23887 fclstopon 23928 isfcls2 23929 alexsubALTlem4 23966 ptcmplem3 23970 tgphaus 24033 xmetec 24350 prdsbl 24407 blval2 24478 isnvc2 24615 isnghm2 24640 isnmhm2 24668 0nmhm 24671 xrtgioo 24723 cncfcnvcn 24847 evth 24886 nmhmcn 25048 cmsss 25279 lssbn 25280 srabn 25288 ishl2 25298 ivthlem2 25381 0plef 25601 itg2monolem1 25679 itg2cnlem1 25690 itg2cnlem2 25691 ellimc2 25806 dvne0 25944 ellogdm 26576 dcubic 26784 atans2 26869 amgm 26929 ftalem3 27013 pclogsum 27154 dchrelbas3 27177 lgsabs1 27275 dchrvmaeq0 27443 rpvmasum2 27451 tgjustf 28452 clwwlkwwlksb 30036 ajval 30843 bnsscmcl 30850 axhcompl-zf 30980 seq1hcau 31169 hlim2 31174 issh3 31201 lnopcnre 32021 dmdbr2 32285 elatcv0 32323 iunsnima 32603 iunsnima2 32604 partfun2 32661 ecxpid 33333 ssdifidlprm 33430 ist0cld 33867 1stmbfm 34294 2ndmbfm 34295 eulerpartlemd 34400 oddprm2 34689 lfuhgr 35183 cvmlift2lem12 35379 bj-rest10 37153 topdifinfeq 37415 finxpsuclem 37462 curunc 37662 istotbnd2 37830 sstotbnd2 37834 isbnd3b 37845 totbndbnd 37849 br1cnvres 38326 fimgmcyc 42652 islnr2 43231 areaquad 43333 tfsconcat0i 43462 afv2res 47363 oddm1evenALTV 47799 oddp1evenALTV 47800 iscnrm3v 49077 isprsd 49079 joindm2 49092 meetdm2 49094 postcposALT 49693 postc 49694 |
| Copyright terms: Public domain | W3C validator |