| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: baibr 536 ceqsrexbv 3622 elrab3 3660 dfpss3 4052 rabsn 4685 elrint2 4954 opres 5960 cores 6222 fnres 6645 fvres 6877 fvmpti 6967 f1ompt 7083 fliftfun 7287 isocnv3 7307 riotaxfrd 7378 ovid 7530 nlimon 7827 limom 7858 brdifun 8701 elecreseq 8720 xpcomco 9031 0sdomg 9070 f1finf1o 9216 f1finf1oOLD 9217 ordtypelem9 9479 isacn 9997 alephinit 10048 isfin5-2 10344 pwfseqlem1 10611 pwfseqlem3 10613 pwfseqlem4 10615 ltresr 11093 xrlenlt 11239 znnnlt1 12560 difrp 12991 elfz 13474 fzolb2 13627 elfzo3 13637 fzouzsplit 13655 rabssnn0fi 13951 caubnd 15325 ello12 15482 elo12 15493 bitsval2 16395 smueqlem 16460 rpexp 16692 ramcl 17000 ismon2 17696 isepi2 17703 isfull2 17875 isfth2 17879 isghm3 19149 gastacos 19242 sylow2alem2 19548 lssnle 19604 isabl2 19720 submcmn2 19769 iscyggen2 19811 iscyg3 19816 cyggexb 19829 gsum2d2 19904 dprdw 19942 dprd2da 19974 iscrng2 20161 dvdsr2 20272 dfrhm2 20383 isdomn2 20620 isdomn2OLD 20621 sdrgacs 20710 islmhm3 20935 prmirredlem 21382 chrnzr 21440 iunocv 21590 iscss2 21595 ishil2 21628 obselocv 21637 psrbaglefi 21835 mplsubrglem 21913 bastop1 22880 isclo 22974 maxlp 23034 isperf2 23039 restperf 23071 cnpnei 23151 cnntr 23162 cnprest 23176 cnprest2 23177 lmres 23187 iscnrm2 23225 ist0-2 23231 ist1-2 23234 ishaus2 23238 tgcmp 23288 cmpfi 23295 dfconn2 23306 t1connperf 23323 subislly 23368 tx1cn 23496 tx2cn 23497 xkopt 23542 xkoinjcn 23574 ist0-4 23616 trfil2 23774 fin1aufil 23819 flimtopon 23857 elflim 23858 fclstopon 23899 isfcls2 23900 alexsubALTlem4 23937 ptcmplem3 23941 tgphaus 24004 xmetec 24322 prdsbl 24379 blval2 24450 isnvc2 24587 isnghm2 24612 isnmhm2 24640 0nmhm 24643 xrtgioo 24695 cncfcnvcn 24819 evth 24858 nmhmcn 25020 cmsss 25251 lssbn 25252 srabn 25260 ishl2 25270 ivthlem2 25353 0plef 25573 itg2monolem1 25651 itg2cnlem1 25662 itg2cnlem2 25663 ellimc2 25778 dvne0 25916 ellogdm 26548 dcubic 26756 atans2 26841 amgm 26901 ftalem3 26985 pclogsum 27126 dchrelbas3 27149 lgsabs1 27247 dchrvmaeq0 27415 rpvmasum2 27423 tgjustf 28400 clwwlkwwlksb 29983 ajval 30790 bnsscmcl 30797 axhcompl-zf 30927 seq1hcau 31116 hlim2 31121 issh3 31148 lnopcnre 31968 dmdbr2 32232 elatcv0 32270 iunsnima 32546 iunsnima2 32547 ecxpid 33332 ssdifidlprm 33429 ist0cld 33823 1stmbfm 34251 2ndmbfm 34252 eulerpartlemd 34357 oddprm2 34646 lfuhgr 35105 cvmlift2lem12 35301 bj-rest10 37076 topdifinfeq 37338 finxpsuclem 37385 curunc 37596 istotbnd2 37764 sstotbnd2 37768 isbnd3b 37779 totbndbnd 37783 br1cnvres 38258 fimgmcyc 42522 islnr2 43103 areaquad 43205 tfsconcat0i 43334 afv2res 47240 oddm1evenALTV 47676 oddp1evenALTV 47677 iscnrm3v 48941 isprsd 48943 joindm2 48956 meetdm2 48958 postcposALT 49557 postc 49558 |
| Copyright terms: Public domain | W3C validator |