![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version |
Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | ibar 529 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
3 | 1, 2 | bitr4id 289 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: baibr 537 ceqsrexbv 3644 elrab3 3684 dfpss3 4086 rabsn 4725 elrint2 4996 opres 5991 cores 6248 fnres 6677 fvres 6910 fvmpti 6997 f1ompt 7112 fliftfun 7311 isocnv3 7331 riotaxfrd 7402 ovid 7551 nlimon 7842 limom 7873 brdifun 8734 xpcomco 9064 0sdomg 9106 0sdomgOLD 9107 f1finf1o 9273 f1finf1oOLD 9274 ordtypelem9 9523 isacn 10041 alephinit 10092 isfin5-2 10388 pwfseqlem1 10655 pwfseqlem3 10657 pwfseqlem4 10659 ltresr 11137 xrlenlt 11281 znnnlt1 12591 difrp 13014 elfz 13492 fzolb2 13641 elfzo3 13651 fzouzsplit 13669 rabssnn0fi 13953 caubnd 15307 ello12 15462 elo12 15473 bitsval2 16368 smueqlem 16433 rpexp 16661 ramcl 16964 ismon2 17683 isepi2 17690 isfull2 17864 isfth2 17868 isghm3 19095 gastacos 19176 sylow2alem2 19488 lssnle 19544 isabl2 19660 submcmn2 19709 iscyggen2 19751 iscyg3 19756 cyggexb 19769 gsum2d2 19844 dprdw 19882 dprd2da 19914 iscrng2 20077 dvdsr2 20181 dfrhm2 20257 sdrgacs 20421 islmhm3 20644 isdomn2 20921 prmirredlem 21048 chrnzr 21088 iunocv 21240 iscss2 21245 ishil2 21280 obselocv 21289 psrbaglefi 21491 psrbaglefiOLD 21492 mplsubrglem 21569 bastop1 22503 isclo 22598 maxlp 22658 isperf2 22663 restperf 22695 cnpnei 22775 cnntr 22786 cnprest 22800 cnprest2 22801 lmres 22811 iscnrm2 22849 ist0-2 22855 ist1-2 22858 ishaus2 22862 tgcmp 22912 cmpfi 22919 dfconn2 22930 t1connperf 22947 subislly 22992 tx1cn 23120 tx2cn 23121 xkopt 23166 xkoinjcn 23198 ist0-4 23240 trfil2 23398 fin1aufil 23443 flimtopon 23481 elflim 23482 fclstopon 23523 isfcls2 23524 alexsubALTlem4 23561 ptcmplem3 23565 tgphaus 23628 xmetec 23947 prdsbl 24007 blval2 24078 isnvc2 24223 isnghm2 24248 isnmhm2 24276 0nmhm 24279 xrtgioo 24329 cncfcnvcn 24448 evth 24482 nmhmcn 24643 cmsss 24875 lssbn 24876 srabn 24884 ishl2 24894 ivthlem2 24976 0plef 25196 itg2monolem1 25275 itg2cnlem1 25286 itg2cnlem2 25287 ellimc2 25401 dvne0 25535 ellogdm 26154 dcubic 26358 atans2 26443 amgm 26502 ftalem3 26586 pclogsum 26725 dchrelbas3 26748 lgsabs1 26846 dchrvmaeq0 27014 rpvmasum2 27022 tgjustf 27762 clwwlkwwlksb 29345 ajval 30152 bnsscmcl 30159 axhcompl-zf 30289 seq1hcau 30478 hlim2 30483 issh3 30510 lnopcnre 31330 dmdbr2 31594 elatcv0 31632 iunsnima 31885 iunsnima2 31886 ecxpid 32517 ist0cld 32882 1stmbfm 33328 2ndmbfm 33329 eulerpartlemd 33434 oddprm2 33736 lfuhgr 34177 cvmlift2lem12 34374 bj-rest10 36061 topdifinfeq 36323 finxpsuclem 36370 curunc 36562 istotbnd2 36730 sstotbnd2 36734 isbnd3b 36745 totbndbnd 36749 br1cnvres 37229 ecres2 37239 islnr2 41944 areaquad 42053 tfsconcat0i 42183 afv2res 46032 oddm1evenALTV 46428 oddp1evenALTV 46429 iscnrm3v 47670 isprsd 47672 joindm2 47685 meetdm2 47687 postcposALT 47785 postc 47786 |
Copyright terms: Public domain | W3C validator |