| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > baib | Structured version Visualization version GIF version | ||
| Description: Move conjunction outside of biconditional. (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| baib.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| baib | ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | baib.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | ibar 528 | . 2 ⊢ (𝜓 → (𝜒 ↔ (𝜓 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝜓 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: baibr 536 ceqsrexbv 3613 elrab3 3651 dfpss3 4042 rabsn 4675 elrint2 4943 opres 5944 cores 6202 fnres 6613 fvres 6845 fvmpti 6933 f1ompt 7049 fliftfun 7253 isocnv3 7273 riotaxfrd 7344 ovid 7494 nlimon 7791 limom 7822 brdifun 8662 elecreseq 8681 xpcomco 8991 0sdomg 9030 f1finf1o 9174 f1finf1oOLD 9175 ordtypelem9 9437 isacn 9957 alephinit 10008 isfin5-2 10304 pwfseqlem1 10571 pwfseqlem3 10573 pwfseqlem4 10575 ltresr 11053 xrlenlt 11199 znnnlt1 12520 difrp 12951 elfz 13434 fzolb2 13587 elfzo3 13597 fzouzsplit 13615 rabssnn0fi 13911 caubnd 15284 ello12 15441 elo12 15452 bitsval2 16354 smueqlem 16419 rpexp 16651 ramcl 16959 ismon2 17659 isepi2 17666 isfull2 17838 isfth2 17842 isghm3 19114 gastacos 19207 sylow2alem2 19515 lssnle 19571 isabl2 19687 submcmn2 19736 iscyggen2 19778 iscyg3 19783 cyggexb 19796 gsum2d2 19871 dprdw 19909 dprd2da 19941 iscrng2 20155 dvdsr2 20266 dfrhm2 20377 isdomn2 20614 isdomn2OLD 20615 sdrgacs 20704 islmhm3 20950 prmirredlem 21397 chrnzr 21455 iunocv 21606 iscss2 21611 ishil2 21644 obselocv 21653 psrbaglefi 21851 mplsubrglem 21929 bastop1 22896 isclo 22990 maxlp 23050 isperf2 23055 restperf 23087 cnpnei 23167 cnntr 23178 cnprest 23192 cnprest2 23193 lmres 23203 iscnrm2 23241 ist0-2 23247 ist1-2 23250 ishaus2 23254 tgcmp 23304 cmpfi 23311 dfconn2 23322 t1connperf 23339 subislly 23384 tx1cn 23512 tx2cn 23513 xkopt 23558 xkoinjcn 23590 ist0-4 23632 trfil2 23790 fin1aufil 23835 flimtopon 23873 elflim 23874 fclstopon 23915 isfcls2 23916 alexsubALTlem4 23953 ptcmplem3 23957 tgphaus 24020 xmetec 24338 prdsbl 24395 blval2 24466 isnvc2 24603 isnghm2 24628 isnmhm2 24656 0nmhm 24659 xrtgioo 24711 cncfcnvcn 24835 evth 24874 nmhmcn 25036 cmsss 25267 lssbn 25268 srabn 25276 ishl2 25286 ivthlem2 25369 0plef 25589 itg2monolem1 25667 itg2cnlem1 25678 itg2cnlem2 25679 ellimc2 25794 dvne0 25932 ellogdm 26564 dcubic 26772 atans2 26857 amgm 26917 ftalem3 27001 pclogsum 27142 dchrelbas3 27165 lgsabs1 27263 dchrvmaeq0 27431 rpvmasum2 27439 tgjustf 28436 clwwlkwwlksb 30016 ajval 30823 bnsscmcl 30830 axhcompl-zf 30960 seq1hcau 31149 hlim2 31154 issh3 31181 lnopcnre 32001 dmdbr2 32265 elatcv0 32303 iunsnima 32579 iunsnima2 32580 ecxpid 33308 ssdifidlprm 33405 ist0cld 33799 1stmbfm 34227 2ndmbfm 34228 eulerpartlemd 34333 oddprm2 34622 lfuhgr 35090 cvmlift2lem12 35286 bj-rest10 37061 topdifinfeq 37323 finxpsuclem 37370 curunc 37581 istotbnd2 37749 sstotbnd2 37753 isbnd3b 37764 totbndbnd 37768 br1cnvres 38243 fimgmcyc 42507 islnr2 43087 areaquad 43189 tfsconcat0i 43318 afv2res 47224 oddm1evenALTV 47660 oddp1evenALTV 47661 iscnrm3v 48938 isprsd 48940 joindm2 48953 meetdm2 48955 postcposALT 49554 postc 49555 |
| Copyright terms: Public domain | W3C validator |