Proof of Theorem eueq2
Step | Hyp | Ref
| Expression |
1 | | notnot 142 |
. . . 4
⊢ (𝜑 → ¬ ¬ 𝜑) |
2 | | eueq2.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
3 | 2 | eueqi 3647 |
. . . . 5
⊢
∃!𝑥 𝑥 = 𝐴 |
4 | | euanv 2627 |
. . . . . 6
⊢
(∃!𝑥(𝜑 ∧ 𝑥 = 𝐴) ↔ (𝜑 ∧ ∃!𝑥 𝑥 = 𝐴)) |
5 | 4 | biimpri 227 |
. . . . 5
⊢ ((𝜑 ∧ ∃!𝑥 𝑥 = 𝐴) → ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) |
6 | 3, 5 | mpan2 687 |
. . . 4
⊢ (𝜑 → ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) |
7 | | euorv 2615 |
. . . 4
⊢ ((¬
¬ 𝜑 ∧ ∃!𝑥(𝜑 ∧ 𝑥 = 𝐴)) → ∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
8 | 1, 6, 7 | syl2anc 583 |
. . 3
⊢ (𝜑 → ∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴))) |
9 | | orcom 866 |
. . . . 5
⊢ ((¬
𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ ¬ 𝜑)) |
10 | 1 | bianfd 534 |
. . . . . 6
⊢ (𝜑 → (¬ 𝜑 ↔ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
11 | 10 | orbi2d 912 |
. . . . 5
⊢ (𝜑 → (((𝜑 ∧ 𝑥 = 𝐴) ∨ ¬ 𝜑) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
12 | 9, 11 | syl5bb 282 |
. . . 4
⊢ (𝜑 → ((¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
13 | 12 | eubidv 2587 |
. . 3
⊢ (𝜑 → (∃!𝑥(¬ 𝜑 ∨ (𝜑 ∧ 𝑥 = 𝐴)) ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
14 | 8, 13 | mpbid 231 |
. 2
⊢ (𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
15 | | eueq2.2 |
. . . . . 6
⊢ 𝐵 ∈ V |
16 | 15 | eueqi 3647 |
. . . . 5
⊢
∃!𝑥 𝑥 = 𝐵 |
17 | | euanv 2627 |
. . . . . 6
⊢
(∃!𝑥(¬
𝜑 ∧ 𝑥 = 𝐵) ↔ (¬ 𝜑 ∧ ∃!𝑥 𝑥 = 𝐵)) |
18 | 17 | biimpri 227 |
. . . . 5
⊢ ((¬
𝜑 ∧ ∃!𝑥 𝑥 = 𝐵) → ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) |
19 | 16, 18 | mpan2 687 |
. . . 4
⊢ (¬
𝜑 → ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) |
20 | | euorv 2615 |
. . . 4
⊢ ((¬
𝜑 ∧ ∃!𝑥(¬ 𝜑 ∧ 𝑥 = 𝐵)) → ∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
21 | 19, 20 | mpdan 683 |
. . 3
⊢ (¬
𝜑 → ∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
22 | | id 22 |
. . . . . 6
⊢ (¬
𝜑 → ¬ 𝜑) |
23 | 22 | bianfd 534 |
. . . . 5
⊢ (¬
𝜑 → (𝜑 ↔ (𝜑 ∧ 𝑥 = 𝐴))) |
24 | 23 | orbi1d 913 |
. . . 4
⊢ (¬
𝜑 → ((𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) ↔ ((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
25 | 24 | eubidv 2587 |
. . 3
⊢ (¬
𝜑 → (∃!𝑥(𝜑 ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) ↔ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)))) |
26 | 21, 25 | mpbid 231 |
. 2
⊢ (¬
𝜑 → ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵))) |
27 | 14, 26 | pm2.61i 182 |
1
⊢
∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) |