Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biluk | Structured version Visualization version GIF version |
Description: Lukasiewicz's shortest axiom for equivalential calculus. Storrs McCall, ed., Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by NM, 10-Jan-2005.) |
Ref | Expression |
---|---|
biluk | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜒 ↔ 𝜓) ↔ (𝜑 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . . . . 5 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜓 ↔ 𝜑)) | |
2 | 1 | bibi1i 338 | . . . 4 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ ((𝜓 ↔ 𝜑) ↔ 𝜒)) |
3 | biass 385 | . . . 4 ⊢ (((𝜓 ↔ 𝜑) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))) | |
4 | 2, 3 | bitri 274 | . . 3 ⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))) |
5 | biass 385 | . . 3 ⊢ ((((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))) ↔ ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑 ↔ 𝜒))))) | |
6 | 4, 5 | mpbi 229 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑 ↔ 𝜒)))) |
7 | biass 385 | . 2 ⊢ (((𝜒 ↔ 𝜓) ↔ (𝜑 ↔ 𝜒)) ↔ (𝜒 ↔ (𝜓 ↔ (𝜑 ↔ 𝜒)))) | |
8 | 6, 7 | bitr4i 277 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜒 ↔ 𝜓) ↔ (𝜑 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biadan 815 |
Copyright terms: Public domain | W3C validator |