![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bibi2i 337 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: bibi12i 339 biluk 385 biadaniALT 820 nanass 1507 xorass 1512 hadbi 1595 hadcoma 1596 hadnot 1599 sbrbis 2314 csbied 3959 dfss2 3994 ssequn1 4209 ab0w 4401 asymref 6148 aceq1 10186 aceq0 10187 zfac 10529 zfcndac 10688 hashreprin 34597 axacprim 35669 eliminable-abeqv 36833 wl-3xorcoma 37444 wl-3xornot 37447 redundpbi1 38587 onsupmaxb 43200 rp-fakeanorass 43475 ichn 47330 dfich2 47332 |
Copyright terms: Public domain | W3C validator |