MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Structured version   Visualization version   GIF version

Theorem bibi1i 338
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 221 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
32bibi2i 337 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 bicom 221 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 296 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  bibi12i  339  biluk  386  biadaniALT  817  nanass  1502  xorass  1508  hadbi  1600  hadcoma  1601  hadnot  1605  sbrbis  2310  csbied  3866  ssequn1  4110  ab0w  4304  asymref  6010  aceq1  9804  aceq0  9805  zfac  10147  zfcndac  10306  hashreprin  32500  axacprim  33548  eliminable-abeqv  34978  wl-3xorcoma  35576  wl-3xornot  35579  redundpbi1  36671  rp-fakeanorass  41018  ichn  44796  dfich2  44798
  Copyright terms: Public domain W3C validator