| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bibi2i 337 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12i 339 biluk 385 biadaniALT 820 nanass 1510 xorass 1515 hadbi 1598 hadcoma 1599 hadnot 1602 sbrbis 2309 csbied 3889 dfss2 3923 ssequn1 4139 ab0w 4332 asymref 6069 aceq1 10030 aceq0 10031 zfac 10373 zfcndac 10532 hashreprin 34590 axacprim 35682 eliminable-abeqv 36843 wl-3xorcoma 37454 wl-3xornot 37457 redundpbi1 38610 onsupmaxb 43215 rp-fakeanorass 43489 ichn 47444 dfich2 47446 |
| Copyright terms: Public domain | W3C validator |