Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bibi2i 338 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
4 | bicom 221 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi12i 340 biluk 387 biadaniALT 818 nanass 1505 xorass 1511 hadbi 1599 hadcoma 1600 hadnot 1604 sbrbis 2307 csbied 3870 ssequn1 4114 ab0w 4307 asymref 6021 aceq1 9873 aceq0 9874 zfac 10216 zfcndac 10375 hashreprin 32600 axacprim 33648 eliminable-abeqv 35051 wl-3xorcoma 35649 wl-3xornot 35652 redundpbi1 36744 rp-fakeanorass 41120 ichn 44908 dfich2 44910 |
Copyright terms: Public domain | W3C validator |