MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Structured version   Visualization version   GIF version

Theorem bibi1i 338
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 222 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
32bibi2i 337 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 bicom 222 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 297 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bibi12i  339  biluk  385  biadaniALT  820  nanass  1511  xorass  1516  hadbi  1599  hadcoma  1600  hadnot  1603  sbrbis  2313  csbied  3882  dfss2  3916  ssequn1  4135  asymref  6067  aceq1  10015  aceq0  10016  zfac  10358  zfcndac  10517  hashreprin  34654  axacprim  35772  eliminable-abeqv  36932  wl-3xorcoma  37543  wl-3xornot  37546  redundpbi1  38748  onsupmaxb  43357  rp-fakeanorass  43631  ichn  47581  dfich2  47583
  Copyright terms: Public domain W3C validator