MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Structured version   Visualization version   GIF version

Theorem bibi1i 338
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 222 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
32bibi2i 337 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 bicom 222 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 297 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bibi12i  339  biluk  385  biadaniALT  821  nanass  1510  xorass  1515  hadbi  1598  hadcoma  1599  hadnot  1602  sbrbis  2310  csbied  3935  dfss2  3969  ssequn1  4186  ab0w  4379  asymref  6136  aceq1  10157  aceq0  10158  zfac  10500  zfcndac  10659  hashreprin  34635  axacprim  35707  eliminable-abeqv  36868  wl-3xorcoma  37479  wl-3xornot  37482  redundpbi1  38632  onsupmaxb  43251  rp-fakeanorass  43526  ichn  47443  dfich2  47445
  Copyright terms: Public domain W3C validator