MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Structured version   Visualization version   GIF version

Theorem bibi1i 338
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 222 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
32bibi2i 337 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 bicom 222 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 297 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bibi12i  339  biluk  385  biadaniALT  820  nanass  1511  xorass  1516  hadbi  1599  hadcoma  1600  hadnot  1603  sbrbis  2311  csbied  3886  dfss2  3920  ssequn1  4136  ab0w  4329  asymref  6063  aceq1  10008  aceq0  10009  zfac  10351  zfcndac  10510  hashreprin  34631  axacprim  35749  eliminable-abeqv  36907  wl-3xorcoma  37518  wl-3xornot  37521  redundpbi1  38674  onsupmaxb  43278  rp-fakeanorass  43552  ichn  47493  dfich2  47495
  Copyright terms: Public domain W3C validator