![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bibi2i 338 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
4 | bicom 221 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi12i 340 biluk 387 biadaniALT 820 nanass 1509 xorass 1515 hadbi 1600 hadcoma 1601 hadnot 1604 sbrbis 2307 csbied 3932 ssequn1 4181 ab0w 4374 asymref 6118 aceq1 10112 aceq0 10113 zfac 10455 zfcndac 10614 hashreprin 33632 axacprim 34676 eliminable-abeqv 35746 wl-3xorcoma 36359 wl-3xornot 36362 redundpbi1 37501 onsupmaxb 41988 rp-fakeanorass 42264 ichn 46124 dfich2 46126 |
Copyright terms: Public domain | W3C validator |