| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bibi2i 337 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12i 339 biluk 385 biadaniALT 821 nanass 1510 xorass 1515 hadbi 1598 hadcoma 1599 hadnot 1602 sbrbis 2310 csbied 3935 dfss2 3969 ssequn1 4186 ab0w 4379 asymref 6136 aceq1 10157 aceq0 10158 zfac 10500 zfcndac 10659 hashreprin 34635 axacprim 35707 eliminable-abeqv 36868 wl-3xorcoma 37479 wl-3xornot 37482 redundpbi1 38632 onsupmaxb 43251 rp-fakeanorass 43526 ichn 47443 dfich2 47445 |
| Copyright terms: Public domain | W3C validator |