![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version |
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom 221 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | bibi2i 337 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
4 | bicom 221 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: bibi12i 339 biluk 385 biadaniALT 818 nanass 1503 xorass 1508 hadbi 1591 hadcoma 1592 hadnot 1595 sbrbis 2298 csbied 3924 ssequn1 4173 ab0w 4366 asymref 6108 aceq1 10109 aceq0 10110 zfac 10452 zfcndac 10611 hashreprin 34123 axacprim 35173 eliminable-abeqv 36237 wl-3xorcoma 36850 wl-3xornot 36853 redundpbi1 37995 onsupmaxb 42502 rp-fakeanorass 42778 ichn 46634 dfich2 46636 |
Copyright terms: Public domain | W3C validator |