| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bibi2i 337 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12i 339 biluk 385 biadaniALT 820 nanass 1511 xorass 1516 hadbi 1599 hadcoma 1600 hadnot 1603 sbrbis 2311 csbied 3886 dfss2 3920 ssequn1 4136 ab0w 4329 asymref 6063 aceq1 10008 aceq0 10009 zfac 10351 zfcndac 10510 hashreprin 34631 axacprim 35749 eliminable-abeqv 36907 wl-3xorcoma 37518 wl-3xornot 37521 redundpbi1 38674 onsupmaxb 43278 rp-fakeanorass 43552 ichn 47493 dfich2 47495 |
| Copyright terms: Public domain | W3C validator |