| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bibi2i 337 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12i 339 biluk 385 biadaniALT 820 nanass 1510 xorass 1515 hadbi 1598 hadcoma 1599 hadnot 1602 sbrbis 2310 csbied 3910 dfss2 3944 ssequn1 4161 ab0w 4354 asymref 6105 aceq1 10131 aceq0 10132 zfac 10474 zfcndac 10633 hashreprin 34652 axacprim 35724 eliminable-abeqv 36885 wl-3xorcoma 37496 wl-3xornot 37499 redundpbi1 38649 onsupmaxb 43263 rp-fakeanorass 43537 ichn 47470 dfich2 47472 |
| Copyright terms: Public domain | W3C validator |