MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Structured version   Visualization version   GIF version

Theorem bibi1i 338
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 222 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
32bibi2i 337 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 bicom 222 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 297 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bibi12i  339  biluk  385  biadaniALT  820  nanass  1510  xorass  1515  hadbi  1598  hadcoma  1599  hadnot  1602  sbrbis  2309  csbied  3901  dfss2  3935  ssequn1  4152  ab0w  4345  asymref  6092  aceq1  10077  aceq0  10078  zfac  10420  zfcndac  10579  hashreprin  34618  axacprim  35701  eliminable-abeqv  36862  wl-3xorcoma  37473  wl-3xornot  37476  redundpbi1  38629  onsupmaxb  43235  rp-fakeanorass  43509  ichn  47461  dfich2  47463
  Copyright terms: Public domain W3C validator