| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bibi1i | Structured version Visualization version GIF version | ||
| Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| bibi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bibi1i | ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom 222 | . 2 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜒 ↔ 𝜑)) | |
| 2 | bibi2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | bibi2i 337 | . 2 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) |
| 4 | bicom 222 | . 2 ⊢ ((𝜒 ↔ 𝜓) ↔ (𝜓 ↔ 𝜒)) | |
| 5 | 1, 3, 4 | 3bitri 297 | 1 ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: bibi12i 339 biluk 385 biadaniALT 820 nanass 1510 xorass 1515 hadbi 1598 hadcoma 1599 hadnot 1602 sbrbis 2309 csbied 3901 dfss2 3935 ssequn1 4152 ab0w 4345 asymref 6092 aceq1 10077 aceq0 10078 zfac 10420 zfcndac 10579 hashreprin 34618 axacprim 35701 eliminable-abeqv 36862 wl-3xorcoma 37473 wl-3xornot 37476 redundpbi1 38629 onsupmaxb 43235 rp-fakeanorass 43509 ichn 47461 dfich2 47463 |
| Copyright terms: Public domain | W3C validator |