MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bibi1i Structured version   Visualization version   GIF version

Theorem bibi1i 338
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.)
Hypothesis
Ref Expression
bibi2i.1 (𝜑𝜓)
Assertion
Ref Expression
bibi1i ((𝜑𝜒) ↔ (𝜓𝜒))

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 222 . 2 ((𝜑𝜒) ↔ (𝜒𝜑))
2 bibi2i.1 . . 3 (𝜑𝜓)
32bibi2i 337 . 2 ((𝜒𝜑) ↔ (𝜒𝜓))
4 bicom 222 . 2 ((𝜒𝜓) ↔ (𝜓𝜒))
51, 3, 43bitri 297 1 ((𝜑𝜒) ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  bibi12i  339  biluk  385  biadaniALT  820  nanass  1507  xorass  1512  hadbi  1595  hadcoma  1596  hadnot  1599  sbrbis  2314  csbied  3959  dfss2  3994  ssequn1  4209  ab0w  4401  asymref  6148  aceq1  10186  aceq0  10187  zfac  10529  zfcndac  10688  hashreprin  34597  axacprim  35669  eliminable-abeqv  36833  wl-3xorcoma  37444  wl-3xornot  37447  redundpbi1  38587  onsupmaxb  43200  rp-fakeanorass  43475  ichn  47330  dfich2  47332
  Copyright terms: Public domain W3C validator