| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.19 | Structured version Visualization version GIF version | ||
| Description: Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.19 | ⊢ ¬ (𝜑 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
| 2 | pm5.18 381 | . 2 ⊢ ((𝜑 ↔ 𝜑) ↔ ¬ (𝜑 ↔ ¬ 𝜑)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ ¬ (𝜑 ↔ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: xorexmid 1527 ru0 2127 ruOLD 3787 notzfaus 5363 pwfseqlem1 10698 bisym1 36420 rusbcALT 44458 |
| Copyright terms: Public domain | W3C validator |