MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.19 Structured version   Visualization version   GIF version

Theorem pm5.19 388
Description: Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.19 ¬ (𝜑 ↔ ¬ 𝜑)

Proof of Theorem pm5.19
StepHypRef Expression
1 biid 260 . 2 (𝜑𝜑)
2 pm5.18 383 . 2 ((𝜑𝜑) ↔ ¬ (𝜑 ↔ ¬ 𝜑))
31, 2mpbi 229 1 ¬ (𝜑 ↔ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  xorexmid  1524  ru  3715  notzfaus  5285  pwfseqlem1  10414  bisym1  34608  bj-ru0  35131  rusbcALT  42057
  Copyright terms: Public domain W3C validator