Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.19 | Structured version Visualization version GIF version |
Description: Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm5.19 | ⊢ ¬ (𝜑 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 260 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
2 | pm5.18 382 | . 2 ⊢ ((𝜑 ↔ 𝜑) ↔ ¬ (𝜑 ↔ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ (𝜑 ↔ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xorexmid 1521 ru 3710 notzfaus 5280 pwfseqlem1 10345 bisym1 34535 bj-ru0 35058 rusbcALT 41946 |
Copyright terms: Public domain | W3C validator |