Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  biorfd Structured version   Visualization version   GIF version

Theorem biorfd 36436
Description: A wff is equivalent to its disjunction with falsehood, deduction form. (Contributed by Peter Mazsa, 22-Aug-2023.)
Hypothesis
Ref Expression
biorfd.1 (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
biorfd (𝜑 → (𝜒 ↔ (𝜓𝜒)))

Proof of Theorem biorfd
StepHypRef Expression
1 biorfd.1 . 2 (𝜑 → ¬ 𝜓)
2 biorf 935 . 2 𝜓 → (𝜒 ↔ (𝜓𝜒)))
31, 2syl 17 1 (𝜑 → (𝜒 ↔ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 846
This theorem is referenced by:  disjressuc2  36602
  Copyright terms: Public domain W3C validator