Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjressuc2 Structured version   Visualization version   GIF version

Theorem disjressuc2 36602
Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.)
Assertion
Ref Expression
disjressuc2 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣   𝑢,𝑉
Allowed substitution hint:   𝑉(𝑣)

Proof of Theorem disjressuc2
StepHypRef Expression
1 eqeq1 2740 . . . . . 6 (𝑢 = 𝐴 → (𝑢 = 𝑣𝐴 = 𝑣))
2 eceq1 8567 . . . . . . . 8 (𝑢 = 𝐴 → [𝑢]𝑅 = [𝐴]𝑅)
32ineq1d 4151 . . . . . . 7 (𝑢 = 𝐴 → ([𝑢]𝑅 ∩ [𝑣]𝑅) = ([𝐴]𝑅 ∩ [𝑣]𝑅))
43eqeq1d 2738 . . . . . 6 (𝑢 = 𝐴 → (([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅ ↔ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))
51, 4orbi12d 917 . . . . 5 (𝑢 = 𝐴 → ((𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)))
6 eqeq2 2748 . . . . . 6 (𝑣 = 𝐴 → (𝑢 = 𝑣𝑢 = 𝐴))
7 eceq1 8567 . . . . . . . 8 (𝑣 = 𝐴 → [𝑣]𝑅 = [𝐴]𝑅)
87ineq2d 4152 . . . . . . 7 (𝑣 = 𝐴 → ([𝑢]𝑅 ∩ [𝑣]𝑅) = ([𝑢]𝑅 ∩ [𝐴]𝑅))
98eqeq1d 2738 . . . . . 6 (𝑣 = 𝐴 → (([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅ ↔ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))
106, 9orbi12d 917 . . . . 5 (𝑣 = 𝐴 → ((𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
11 eqeq1 2740 . . . . . 6 (𝑢 = 𝐴 → (𝑢 = 𝐴𝐴 = 𝐴))
122ineq1d 4151 . . . . . . 7 (𝑢 = 𝐴 → ([𝑢]𝑅 ∩ [𝐴]𝑅) = ([𝐴]𝑅 ∩ [𝐴]𝑅))
1312eqeq1d 2738 . . . . . 6 (𝑢 = 𝐴 → (([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅ ↔ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅))
1411, 13orbi12d 917 . . . . 5 (𝑢 = 𝐴 → ((𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅)))
155, 10, 142ralunsn 4831 . . . 4 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ (∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅)))))
16 eqid 2736 . . . . . . 7 𝐴 = 𝐴
1716orci 863 . . . . . 6 (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅)
1817biantru 531 . . . . 5 (∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅)))
1918anbi2i 624 . . . 4 (((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) ↔ ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ (∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅))))
2015, 19bitr4di 289 . . 3 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))))
21 eqeq1 2740 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝑢 = 𝐴𝑣 = 𝐴))
22 eqcom 2743 . . . . . . . . . 10 (𝑣 = 𝐴𝐴 = 𝑣)
2321, 22bitrdi 287 . . . . . . . . 9 (𝑢 = 𝑣 → (𝑢 = 𝐴𝐴 = 𝑣))
24 eceq1 8567 . . . . . . . . . . . 12 (𝑢 = 𝑣 → [𝑢]𝑅 = [𝑣]𝑅)
2524ineq1d 4151 . . . . . . . . . . 11 (𝑢 = 𝑣 → ([𝑢]𝑅 ∩ [𝐴]𝑅) = ([𝑣]𝑅 ∩ [𝐴]𝑅))
26 incom 4141 . . . . . . . . . . 11 ([𝑣]𝑅 ∩ [𝐴]𝑅) = ([𝐴]𝑅 ∩ [𝑣]𝑅)
2725, 26eqtrdi 2792 . . . . . . . . . 10 (𝑢 = 𝑣 → ([𝑢]𝑅 ∩ [𝐴]𝑅) = ([𝐴]𝑅 ∩ [𝑣]𝑅))
2827eqeq1d 2738 . . . . . . . . 9 (𝑢 = 𝑣 → (([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅ ↔ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))
2923, 28orbi12d 917 . . . . . . . 8 (𝑢 = 𝑣 → ((𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)))
3029cbvralvw 3222 . . . . . . 7 (∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))
3130biimpi 215 . . . . . 6 (∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) → ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))
3231pm4.71i 561 . . . . 5 (∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ (∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)))
3332anbi2i 624 . . . 4 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))))
34 3anass 1095 . . . 4 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))))
35 df-3an 1089 . . . 4 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) ↔ ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)))
3633, 34, 353bitr2ri 300 . . 3 (((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ ∀𝑣𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
3720, 36bitrdi 287 . 2 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
38 elneq 9405 . . . . . 6 (𝑢𝐴𝑢𝐴)
3938neneqd 2946 . . . . 5 (𝑢𝐴 → ¬ 𝑢 = 𝐴)
4039biorfd 36436 . . . 4 (𝑢𝐴 → (([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅ ↔ (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
4140ralbiia 3091 . . 3 (∀𝑢𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅ ↔ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))
4241anbi2i 624 . 2 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
4337, 42bitr4di 289 1 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  wral 3062  cun 3890  cin 3891  c0 4262  {csn 4565  [cec 8527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-reg 9399
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531
This theorem is referenced by:  disjsuc2  36605
  Copyright terms: Public domain W3C validator