Proof of Theorem disjressuc2
Step | Hyp | Ref
| Expression |
1 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑢 = 𝐴 → (𝑢 = 𝑣 ↔ 𝐴 = 𝑣)) |
2 | | eceq1 8567 |
. . . . . . . 8
⊢ (𝑢 = 𝐴 → [𝑢]𝑅 = [𝐴]𝑅) |
3 | 2 | ineq1d 4151 |
. . . . . . 7
⊢ (𝑢 = 𝐴 → ([𝑢]𝑅 ∩ [𝑣]𝑅) = ([𝐴]𝑅 ∩ [𝑣]𝑅)) |
4 | 3 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑢 = 𝐴 → (([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅ ↔ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) |
5 | 1, 4 | orbi12d 917 |
. . . . 5
⊢ (𝑢 = 𝐴 → ((𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))) |
6 | | eqeq2 2748 |
. . . . . 6
⊢ (𝑣 = 𝐴 → (𝑢 = 𝑣 ↔ 𝑢 = 𝐴)) |
7 | | eceq1 8567 |
. . . . . . . 8
⊢ (𝑣 = 𝐴 → [𝑣]𝑅 = [𝐴]𝑅) |
8 | 7 | ineq2d 4152 |
. . . . . . 7
⊢ (𝑣 = 𝐴 → ([𝑢]𝑅 ∩ [𝑣]𝑅) = ([𝑢]𝑅 ∩ [𝐴]𝑅)) |
9 | 8 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑣 = 𝐴 → (([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅ ↔ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) |
10 | 6, 9 | orbi12d 917 |
. . . . 5
⊢ (𝑣 = 𝐴 → ((𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
11 | | eqeq1 2740 |
. . . . . 6
⊢ (𝑢 = 𝐴 → (𝑢 = 𝐴 ↔ 𝐴 = 𝐴)) |
12 | 2 | ineq1d 4151 |
. . . . . . 7
⊢ (𝑢 = 𝐴 → ([𝑢]𝑅 ∩ [𝐴]𝑅) = ([𝐴]𝑅 ∩ [𝐴]𝑅)) |
13 | 12 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑢 = 𝐴 → (([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅ ↔ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅)) |
14 | 11, 13 | orbi12d 917 |
. . . . 5
⊢ (𝑢 = 𝐴 → ((𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅))) |
15 | 5, 10, 14 | 2ralunsn 4831 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ (∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅))))) |
16 | | eqid 2736 |
. . . . . . 7
⊢ 𝐴 = 𝐴 |
17 | 16 | orci 863 |
. . . . . 6
⊢ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅) |
18 | 17 | biantru 531 |
. . . . 5
⊢
(∀𝑣 ∈
𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅))) |
19 | 18 | anbi2i 624 |
. . . 4
⊢
(((∀𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) ↔ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ (∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (𝐴 = 𝐴 ∨ ([𝐴]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
20 | 15, 19 | bitr4di 289 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)))) |
21 | | eqeq1 2740 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → (𝑢 = 𝐴 ↔ 𝑣 = 𝐴)) |
22 | | eqcom 2743 |
. . . . . . . . . 10
⊢ (𝑣 = 𝐴 ↔ 𝐴 = 𝑣) |
23 | 21, 22 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑢 = 𝑣 → (𝑢 = 𝐴 ↔ 𝐴 = 𝑣)) |
24 | | eceq1 8567 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → [𝑢]𝑅 = [𝑣]𝑅) |
25 | 24 | ineq1d 4151 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑣 → ([𝑢]𝑅 ∩ [𝐴]𝑅) = ([𝑣]𝑅 ∩ [𝐴]𝑅)) |
26 | | incom 4141 |
. . . . . . . . . . 11
⊢ ([𝑣]𝑅 ∩ [𝐴]𝑅) = ([𝐴]𝑅 ∩ [𝑣]𝑅) |
27 | 25, 26 | eqtrdi 2792 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑣 → ([𝑢]𝑅 ∩ [𝐴]𝑅) = ([𝐴]𝑅 ∩ [𝑣]𝑅)) |
28 | 27 | eqeq1d 2738 |
. . . . . . . . 9
⊢ (𝑢 = 𝑣 → (([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅ ↔ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) |
29 | 23, 28 | orbi12d 917 |
. . . . . . . 8
⊢ (𝑢 = 𝑣 → ((𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))) |
30 | 29 | cbvralvw 3222 |
. . . . . . 7
⊢
(∀𝑢 ∈
𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) |
31 | 30 | biimpi 215 |
. . . . . 6
⊢
(∀𝑢 ∈
𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) → ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) |
32 | 31 | pm4.71i 561 |
. . . . 5
⊢
(∀𝑢 ∈
𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ (∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))) |
33 | 32 | anbi2i 624 |
. . . 4
⊢
((∀𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)))) |
34 | | 3anass 1095 |
. . . 4
⊢
((∀𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ (∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)))) |
35 | | df-3an 1089 |
. . . 4
⊢
((∀𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) ↔ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅))) |
36 | 33, 34, 35 | 3bitr2ri 300 |
. . 3
⊢
(((∀𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) ∧ ∀𝑣 ∈ 𝐴 (𝐴 = 𝑣 ∨ ([𝐴]𝑅 ∩ [𝑣]𝑅) = ∅)) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
37 | 20, 36 | bitrdi 287 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
38 | | elneq 9405 |
. . . . . 6
⊢ (𝑢 ∈ 𝐴 → 𝑢 ≠ 𝐴) |
39 | 38 | neneqd 2946 |
. . . . 5
⊢ (𝑢 ∈ 𝐴 → ¬ 𝑢 = 𝐴) |
40 | 39 | biorfd 36436 |
. . . 4
⊢ (𝑢 ∈ 𝐴 → (([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅ ↔ (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
41 | 40 | ralbiia 3091 |
. . 3
⊢
(∀𝑢 ∈
𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅ ↔ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)) |
42 | 41 | anbi2i 624 |
. 2
⊢
((∀𝑢 ∈
𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 (𝑢 = 𝐴 ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
43 | 37, 42 | bitr4di 289 |
1
⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |