Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqbrtr Structured version   Visualization version   GIF version

Theorem eqbrtr 37098
Description: Substitution of equal classes in binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.)
Assertion
Ref Expression
eqbrtr ((𝐴 = 𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Proof of Theorem eqbrtr
StepHypRef Expression
1 breq1 5152 . 2 (𝐴 = 𝐵 → (𝐴𝑅𝐶𝐵𝑅𝐶))
21biimpar 479 1 ((𝐴 = 𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542   class class class wbr 5149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150
This theorem is referenced by:  eqbrb  37099
  Copyright terms: Public domain W3C validator