Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqbrtr Structured version   Visualization version   GIF version

Theorem eqbrtr 36437
Description: Substitution of equal classes in binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.)
Assertion
Ref Expression
eqbrtr ((𝐴 = 𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Proof of Theorem eqbrtr
StepHypRef Expression
1 breq1 5084 . 2 (𝐴 = 𝐵 → (𝐴𝑅𝐶𝐵𝑅𝐶))
21biimpar 479 1 ((𝐴 = 𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539   class class class wbr 5081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082
This theorem is referenced by:  eqbrb  36438
  Copyright terms: Public domain W3C validator