![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqbrtr | Structured version Visualization version GIF version |
Description: Substitution of equal classes in binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.) |
Ref | Expression |
---|---|
eqbrtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 |
This theorem is referenced by: eqbrb 38188 |
Copyright terms: Public domain | W3C validator |