| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqbrtr | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes in binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.) |
| Ref | Expression |
|---|---|
| eqbrtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5128 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 class class class wbr 5125 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 |
| This theorem is referenced by: eqbrb 38175 |
| Copyright terms: Public domain | W3C validator |