Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bianim | Structured version Visualization version GIF version |
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.) |
Ref | Expression |
---|---|
bianim.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
bianim.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bianim | ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bianim.1 | . 2 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | bianim.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | pm5.32ri 577 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ (𝜃 ∧ 𝜒)) |
4 | 1, 3 | bitri 275 | 1 ⊢ (𝜑 ↔ (𝜃 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: dfcnvrefrel4 36746 dfcnvrefrel5 36747 |
Copyright terms: Public domain | W3C validator |