Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bianim Structured version   Visualization version   GIF version

Theorem bianim 36435
Description: Exchanging conjunction in a biconditional. (Contributed by Peter Mazsa, 31-Jul-2023.)
Hypotheses
Ref Expression
bianim.1 (𝜑 ↔ (𝜓𝜒))
bianim.2 (𝜒 → (𝜓𝜃))
Assertion
Ref Expression
bianim (𝜑 ↔ (𝜃𝜒))

Proof of Theorem bianim
StepHypRef Expression
1 bianim.1 . 2 (𝜑 ↔ (𝜓𝜒))
2 bianim.2 . . 3 (𝜒 → (𝜓𝜃))
32pm5.32ri 577 . 2 ((𝜓𝜒) ↔ (𝜃𝜒))
41, 3bitri 275 1 (𝜑 ↔ (𝜃𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  dfcnvrefrel4  36746  dfcnvrefrel5  36747
  Copyright terms: Public domain W3C validator