MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  biort Structured version   Visualization version   GIF version

Theorem biort 933
Description: A disjunction with a true formula is equivalent to that true formula. (Contributed by NM, 23-May-1999.)
Assertion
Ref Expression
biort (𝜑 → (𝜑 ↔ (𝜑𝜓)))

Proof of Theorem biort
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 orc 864 . 2 (𝜑 → (𝜑𝜓))
31, 22thd 264 1 (𝜑 → (𝜑 ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  pm5.55  946
  Copyright terms: Public domain W3C validator