| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.78 | Structured version Visualization version GIF version | ||
| Description: Implication distributes over disjunction. Theorem *4.78 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm4.78 | ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orordi 928 | . 2 ⊢ ((¬ 𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒))) | |
| 2 | imor 853 | . 2 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (¬ 𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | imor 853 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
| 4 | imor 853 | . . 3 ⊢ ((𝜑 → 𝜒) ↔ (¬ 𝜑 ∨ 𝜒)) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒))) |
| 6 | 1, 2, 5 | 3bitr4ri 304 | 1 ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |