Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm4.78 | Structured version Visualization version GIF version |
Description: Implication distributes over disjunction. Theorem *4.78 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2012.) |
Ref | Expression |
---|---|
pm4.78 | ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orordi 925 | . 2 ⊢ ((¬ 𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒))) | |
2 | imor 849 | . 2 ⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ (¬ 𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | imor 849 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
4 | imor 849 | . . 3 ⊢ ((𝜑 → 𝜒) ↔ (¬ 𝜑 ∨ 𝜒)) | |
5 | 3, 4 | orbi12i 911 | . 2 ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ (¬ 𝜑 ∨ 𝜒))) |
6 | 1, 2, 5 | 3bitr4ri 303 | 1 ⊢ (((𝜑 → 𝜓) ∨ (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |