![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version |
Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
2thd.1 | ⊢ (𝜑 → 𝜓) |
2thd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | pm5.1im 263 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: 2falsed 376 biort 934 vtocl2d 3574 vtocl2 3578 vtocl3 3579 rspcime 3640 sbc2or 3813 disjprg 5162 euotd 5532 posn 5785 frsn 5787 cnvpo 6318 elabrex 7279 elabrexg 7280 riota5f 7433 smoord 8421 brwdom2 9642 finacn 10119 acacni 10210 dfac13 10212 fin1a2lem10 10478 gch2 10744 gchac 10750 recmulnq 11033 nn1m1nn 12314 nn0sub 12603 xnn0n0n1ge2b 13194 qextltlem 13264 xnn0lem1lt 13306 xsubge0 13323 xlesubadd 13325 iccshftr 13546 iccshftl 13548 iccdil 13550 icccntr 13552 fzaddel 13618 elfzomelpfzo 13821 sqlecan 14258 nnesq 14276 hashdom 14428 swrdspsleq 14713 repswsymballbi 14828 m1exp1 16424 bitsmod 16482 dvdssq 16614 pcdvdsb 16916 vdwmc2 17026 acsfn 17717 subsubc 17917 funcres2b 17961 isipodrs 18607 issubg3 19184 sdrgacs 20824 lmhmlvec 21132 opnnei 23149 lmss 23327 lmres 23329 cmpfi 23437 xkopt 23684 acufl 23946 lmhmclm 25139 equivcmet 25370 degltlem1 26131 mdegle0 26136 cxple2 26757 rlimcnp3 27028 dchrelbas3 27300 tgcolg 28580 hlbtwn 28637 eupth2lem3lem6 30265 ifnebib 32572 isoun 32713 unitprodclb 33382 smatrcl 33742 msrrcl 35511 fz0n 35693 onint1 36415 bj-animbi 36525 bj-nfcsym 36865 matunitlindf 37578 ftc1anclem6 37658 lcvexchlem1 38990 ltrnatb 40094 cdlemg27b 40653 dvdsexpnn0 42321 fsuppind 42545 gicabl 43056 dfacbasgrp 43065 rp-fakeimass 43474 or3or 43985 radcnvrat 44283 eliooshift 45424 ellimcabssub0 45538 |
Copyright terms: Public domain | W3C validator |