| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 263 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2falsed 376 biort 935 vtocl2d 3517 vtocl2 3521 vtocl3 3522 rspcime 3582 sbc2or 3750 disjprg 5087 euotd 5453 posn 5702 frsn 5704 cnvpo 6234 elabrex 7176 elabrexg 7177 riota5f 7331 smoord 8285 brwdom2 9459 finacn 9941 acacni 10032 dfac13 10034 fin1a2lem10 10300 gch2 10566 gchac 10572 recmulnq 10855 nn1m1nn 12146 nn0sub 12431 xnn0n0n1ge2b 13031 qextltlem 13101 xnn0lem1lt 13143 xsubge0 13160 xlesubadd 13162 iccshftr 13386 iccshftl 13388 iccdil 13390 icccntr 13392 fzaddel 13458 elfzomelpfzo 13672 sqlecan 14116 nnesq 14134 hashdom 14286 swrdspsleq 14573 repswsymballbi 14687 m1exp1 16287 bitsmod 16347 dvdssq 16478 pcdvdsb 16781 vdwmc2 16891 acsfn 17565 subsubc 17760 funcres2b 17804 isipodrs 18443 issubg3 19057 sdrgacs 20717 lmhmlvec 21045 opnnei 23036 lmss 23214 lmres 23216 cmpfi 23324 xkopt 23571 acufl 23833 lmhmclm 25015 equivcmet 25245 degltlem1 26005 mdegle0 26010 cxple2 26634 rlimcnp3 26905 dchrelbas3 27177 tgcolg 28533 hlbtwn 28590 eupth2lem3lem6 30211 ifnebib 32527 isoun 32681 subsdrg 33262 unitprodclb 33352 smatrcl 33807 msrrcl 35585 fz0n 35773 onint1 36489 bj-animbi 36599 bj-nfcsym 36939 matunitlindf 37664 ftc1anclem6 37744 lcvexchlem1 39079 ltrnatb 40182 cdlemg27b 40741 dvdsexpnn0 42373 fsuppind 42629 gicabl 43138 dfacbasgrp 43147 rp-fakeimass 43551 or3or 44062 radcnvrat 44353 eliooshift 45552 ellimcabssub0 45663 resccat 49112 |
| Copyright terms: Public domain | W3C validator |