| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 263 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2falsed 376 biort 935 vtocl2d 3525 vtocl2 3529 vtocl3 3530 rspcime 3590 sbc2or 3759 disjprg 5098 euotd 5468 posn 5717 frsn 5719 cnvpo 6248 elabrex 7198 elabrexg 7199 riota5f 7354 smoord 8311 brwdom2 9502 finacn 9979 acacni 10070 dfac13 10072 fin1a2lem10 10338 gch2 10604 gchac 10610 recmulnq 10893 nn1m1nn 12183 nn0sub 12468 xnn0n0n1ge2b 13068 qextltlem 13138 xnn0lem1lt 13180 xsubge0 13197 xlesubadd 13199 iccshftr 13423 iccshftl 13425 iccdil 13427 icccntr 13429 fzaddel 13495 elfzomelpfzo 13708 sqlecan 14150 nnesq 14168 hashdom 14320 swrdspsleq 14606 repswsymballbi 14721 m1exp1 16322 bitsmod 16382 dvdssq 16513 pcdvdsb 16816 vdwmc2 16926 acsfn 17596 subsubc 17791 funcres2b 17835 isipodrs 18472 issubg3 19052 sdrgacs 20686 lmhmlvec 20993 opnnei 22983 lmss 23161 lmres 23163 cmpfi 23271 xkopt 23518 acufl 23780 lmhmclm 24963 equivcmet 25193 degltlem1 25953 mdegle0 25958 cxple2 26582 rlimcnp3 26853 dchrelbas3 27125 tgcolg 28457 hlbtwn 28514 eupth2lem3lem6 30135 ifnebib 32451 isoun 32598 subsdrg 33221 unitprodclb 33333 smatrcl 33759 msrrcl 35503 fz0n 35691 onint1 36410 bj-animbi 36520 bj-nfcsym 36860 matunitlindf 37585 ftc1anclem6 37665 lcvexchlem1 39000 ltrnatb 40104 cdlemg27b 40663 dvdsexpnn0 42295 fsuppind 42551 gicabl 43061 dfacbasgrp 43070 rp-fakeimass 43474 or3or 43985 radcnvrat 44276 eliooshift 45477 ellimcabssub0 45588 resccat 49036 |
| Copyright terms: Public domain | W3C validator |