Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version |
Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
2thd.1 | ⊢ (𝜑 → 𝜓) |
2thd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | pm5.1im 262 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 2falsed 376 biort 932 vtocl2d 3486 vtocl2 3490 vtocl3 3491 rspcime 3556 sbc2or 3720 ralidmOLD 4443 disjprgw 5065 disjprg 5066 euotd 5421 posn 5663 frsn 5665 cnvpo 6179 elabrex 7098 riota5f 7241 smoord 8167 brwdom2 9262 finacn 9737 acacni 9827 dfac13 9829 fin1a2lem10 10096 gch2 10362 gchac 10368 recmulnq 10651 nn1m1nn 11924 nn0sub 12213 xnn0n0n1ge2b 12796 qextltlem 12865 xnn0lem1lt 12907 xsubge0 12924 xlesubadd 12926 iccshftr 13147 iccshftl 13149 iccdil 13151 icccntr 13153 fzaddel 13219 elfzomelpfzo 13419 sqlecan 13853 nnesq 13870 hashdom 14022 swrdspsleq 14306 repswsymballbi 14421 m1exp1 16013 bitsmod 16071 dvdssq 16200 pcdvdsb 16498 vdwmc2 16608 acsfn 17285 subsubc 17484 funcres2b 17528 isipodrs 18170 issubg3 18688 sdrgacs 19984 opnnei 22179 lmss 22357 lmres 22359 cmpfi 22467 xkopt 22714 acufl 22976 lmhmclm 24156 equivcmet 24386 degltlem1 25142 mdegle0 25147 cxple2 25757 rlimcnp3 26022 dchrelbas3 26291 tgcolg 26819 hlbtwn 26876 eupth2lem3lem6 28498 isoun 30936 smatrcl 31648 msrrcl 33405 fz0n 33602 onint1 34565 bj-animbi 34666 bj-nfcsym 35011 matunitlindf 35702 ftc1anclem6 35782 lcvexchlem1 36975 ltrnatb 38078 cdlemg27b 38637 lmhmlvec 40186 fsuppind 40202 dvdsexpnn0 40262 gicabl 40840 dfacbasgrp 40849 rp-fakeimass 41017 or3or 41520 radcnvrat 41821 elabrexg 42478 eliooshift 42934 ellimcabssub0 43048 |
Copyright terms: Public domain | W3C validator |