Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version |
Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
2thd.1 | ⊢ (𝜑 → 𝜓) |
2thd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | pm5.1im 266 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: 2falsed 380 biort 935 vtocl2d 3461 vtocl2 3465 vtocl3 3466 rspcime 3530 sbc2or 3689 ralidmOLD 4402 disjprgw 5025 disjprg 5026 euotd 5370 posn 5608 frsn 5610 cnvpo 6119 elabrex 7013 riota5f 7156 smoord 8031 brwdom2 9110 finacn 9550 acacni 9640 dfac13 9642 fin1a2lem10 9909 gch2 10175 gchac 10181 recmulnq 10464 nn1m1nn 11737 nn0sub 12026 xnn0n0n1ge2b 12609 qextltlem 12678 xnn0lem1lt 12720 xsubge0 12737 xlesubadd 12739 iccshftr 12960 iccshftl 12962 iccdil 12964 icccntr 12966 fzaddel 13032 elfzomelpfzo 13232 sqlecan 13663 nnesq 13680 hashdom 13832 swrdspsleq 14116 repswsymballbi 14231 m1exp1 15821 bitsmod 15879 dvdssq 16008 pcdvdsb 16305 vdwmc2 16415 acsfn 17033 subsubc 17228 funcres2b 17272 isipodrs 17887 issubg3 18415 sdrgacs 19699 opnnei 21871 lmss 22049 lmres 22051 cmpfi 22159 xkopt 22406 acufl 22668 lmhmclm 23839 equivcmet 24069 degltlem1 24825 mdegle0 24830 cxple2 25440 rlimcnp3 25705 dchrelbas3 25974 tgcolg 26500 hlbtwn 26557 eupth2lem3lem6 28170 isoun 30609 smatrcl 31318 msrrcl 33076 fz0n 33267 onint1 34276 bj-animbi 34377 bj-nfcsym 34716 matunitlindf 35398 ftc1anclem6 35478 lcvexchlem1 36671 ltrnatb 37774 cdlemg27b 38333 lmhmlvec 39842 fsuppind 39858 dvdsexpnn0 39918 gicabl 40496 dfacbasgrp 40505 rp-fakeimass 40673 or3or 41177 radcnvrat 41470 elabrexg 42127 eliooshift 42584 ellimcabssub0 42700 |
Copyright terms: Public domain | W3C validator |