![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version |
Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
Ref | Expression |
---|---|
2thd.1 | ⊢ (𝜑 → 𝜓) |
2thd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | pm5.1im 263 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 2falsed 376 biort 932 vtocl2d 3542 vtocl2 3547 vtocl3 3548 rspcime 3609 sbc2or 3779 ralidmOLD 4508 disjprgw 5134 disjprg 5135 euotd 5504 posn 5752 frsn 5754 cnvpo 6277 elabrex 7234 elabrexg 7235 riota5f 7387 smoord 8361 brwdom2 9565 finacn 10042 acacni 10132 dfac13 10134 fin1a2lem10 10401 gch2 10667 gchac 10673 recmulnq 10956 nn1m1nn 12231 nn0sub 12520 xnn0n0n1ge2b 13109 qextltlem 13179 xnn0lem1lt 13221 xsubge0 13238 xlesubadd 13240 iccshftr 13461 iccshftl 13463 iccdil 13465 icccntr 13467 fzaddel 13533 elfzomelpfzo 13734 sqlecan 14171 nnesq 14188 hashdom 14337 swrdspsleq 14613 repswsymballbi 14728 m1exp1 16318 bitsmod 16376 dvdssq 16503 pcdvdsb 16803 vdwmc2 16913 acsfn 17604 subsubc 17804 funcres2b 17848 isipodrs 18494 issubg3 19063 sdrgacs 20644 lmhmlvec 20950 opnnei 22948 lmss 23126 lmres 23128 cmpfi 23236 xkopt 23483 acufl 23745 lmhmclm 24938 equivcmet 25169 degltlem1 25932 mdegle0 25937 cxple2 26550 rlimcnp3 26818 dchrelbas3 27090 tgcolg 28277 hlbtwn 28334 eupth2lem3lem6 29958 ifnebib 32253 isoun 32395 smatrcl 33268 msrrcl 35025 fz0n 35197 onint1 35825 bj-animbi 35926 bj-nfcsym 36270 matunitlindf 36980 ftc1anclem6 37060 lcvexchlem1 38398 ltrnatb 39502 cdlemg27b 40061 fsuppind 41655 dvdsexpnn0 41733 gicabl 42355 dfacbasgrp 42364 rp-fakeimass 42777 or3or 43288 radcnvrat 43587 eliooshift 44729 ellimcabssub0 44843 |
Copyright terms: Public domain | W3C validator |