| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 263 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2falsed 376 biort 935 vtocl2d 3531 vtocl2 3535 vtocl3 3536 rspcime 3596 sbc2or 3765 disjprg 5106 euotd 5476 posn 5727 frsn 5729 cnvpo 6263 elabrex 7219 elabrexg 7220 riota5f 7375 smoord 8337 brwdom2 9533 finacn 10010 acacni 10101 dfac13 10103 fin1a2lem10 10369 gch2 10635 gchac 10641 recmulnq 10924 nn1m1nn 12214 nn0sub 12499 xnn0n0n1ge2b 13099 qextltlem 13169 xnn0lem1lt 13211 xsubge0 13228 xlesubadd 13230 iccshftr 13454 iccshftl 13456 iccdil 13458 icccntr 13460 fzaddel 13526 elfzomelpfzo 13739 sqlecan 14181 nnesq 14199 hashdom 14351 swrdspsleq 14637 repswsymballbi 14752 m1exp1 16353 bitsmod 16413 dvdssq 16544 pcdvdsb 16847 vdwmc2 16957 acsfn 17627 subsubc 17822 funcres2b 17866 isipodrs 18503 issubg3 19083 sdrgacs 20717 lmhmlvec 21024 opnnei 23014 lmss 23192 lmres 23194 cmpfi 23302 xkopt 23549 acufl 23811 lmhmclm 24994 equivcmet 25224 degltlem1 25984 mdegle0 25989 cxple2 26613 rlimcnp3 26884 dchrelbas3 27156 tgcolg 28488 hlbtwn 28545 eupth2lem3lem6 30169 ifnebib 32485 isoun 32632 subsdrg 33255 unitprodclb 33367 smatrcl 33793 msrrcl 35537 fz0n 35725 onint1 36444 bj-animbi 36554 bj-nfcsym 36894 matunitlindf 37619 ftc1anclem6 37699 lcvexchlem1 39034 ltrnatb 40138 cdlemg27b 40697 dvdsexpnn0 42329 fsuppind 42585 gicabl 43095 dfacbasgrp 43104 rp-fakeimass 43508 or3or 44019 radcnvrat 44310 eliooshift 45511 ellimcabssub0 45622 resccat 49067 |
| Copyright terms: Public domain | W3C validator |