| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 263 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2falsed 376 biort 935 vtocl2d 3541 vtocl2 3545 vtocl3 3546 rspcime 3606 sbc2or 3774 disjprg 5115 euotd 5488 posn 5740 frsn 5742 cnvpo 6276 elabrex 7233 elabrexg 7234 riota5f 7388 smoord 8377 brwdom2 9585 finacn 10062 acacni 10153 dfac13 10155 fin1a2lem10 10421 gch2 10687 gchac 10693 recmulnq 10976 nn1m1nn 12259 nn0sub 12549 xnn0n0n1ge2b 13146 qextltlem 13216 xnn0lem1lt 13258 xsubge0 13275 xlesubadd 13277 iccshftr 13501 iccshftl 13503 iccdil 13505 icccntr 13507 fzaddel 13573 elfzomelpfzo 13785 sqlecan 14225 nnesq 14243 hashdom 14395 swrdspsleq 14681 repswsymballbi 14796 m1exp1 16393 bitsmod 16453 dvdssq 16584 pcdvdsb 16887 vdwmc2 16997 acsfn 17669 subsubc 17864 funcres2b 17908 isipodrs 18545 issubg3 19125 sdrgacs 20759 lmhmlvec 21066 opnnei 23056 lmss 23234 lmres 23236 cmpfi 23344 xkopt 23591 acufl 23853 lmhmclm 25036 equivcmet 25267 degltlem1 26027 mdegle0 26032 cxple2 26656 rlimcnp3 26927 dchrelbas3 27199 tgcolg 28479 hlbtwn 28536 eupth2lem3lem6 30160 ifnebib 32476 isoun 32625 subsdrg 33238 unitprodclb 33350 smatrcl 33773 msrrcl 35511 fz0n 35694 onint1 36413 bj-animbi 36523 bj-nfcsym 36863 matunitlindf 37588 ftc1anclem6 37668 lcvexchlem1 38998 ltrnatb 40102 cdlemg27b 40661 dvdsexpnn0 42330 fsuppind 42560 gicabl 43070 dfacbasgrp 43079 rp-fakeimass 43483 or3or 43994 radcnvrat 44286 eliooshift 45483 ellimcabssub0 45594 resccat 48989 |
| Copyright terms: Public domain | W3C validator |