| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 263 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2falsed 376 biort 935 vtocl2d 3516 vtocl2 3519 vtocl3 3520 rspcime 3578 sbc2or 3746 disjprg 5091 euotd 5458 posn 5707 frsn 5709 cnvpo 6242 elabrex 7185 elabrexg 7186 riota5f 7340 smoord 8294 brwdom2 9470 finacn 9952 acacni 10043 dfac13 10045 fin1a2lem10 10311 gch2 10577 gchac 10583 recmulnq 10866 nn1m1nn 12157 nn0sub 12442 xnn0n0n1ge2b 13037 qextltlem 13108 xnn0lem1lt 13150 xsubge0 13167 xlesubadd 13169 iccshftr 13393 iccshftl 13395 iccdil 13397 icccntr 13399 fzaddel 13465 elfzomelpfzo 13679 sqlecan 14123 nnesq 14141 hashdom 14293 swrdspsleq 14580 repswsymballbi 14694 m1exp1 16294 bitsmod 16354 dvdssq 16485 pcdvdsb 16788 vdwmc2 16898 acsfn 17573 subsubc 17768 funcres2b 17812 isipodrs 18451 issubg3 19065 sdrgacs 20725 lmhmlvec 21053 opnnei 23055 lmss 23233 lmres 23235 cmpfi 23343 xkopt 23590 acufl 23852 lmhmclm 25034 equivcmet 25264 degltlem1 26024 mdegle0 26029 cxple2 26653 rlimcnp3 26924 dchrelbas3 27196 tgcolg 28552 hlbtwn 28609 eupth2lem3lem6 30234 ifnebib 32550 isoun 32707 subsdrg 33308 unitprodclb 33398 smatrcl 33881 msrrcl 35659 fz0n 35847 onint1 36565 bj-animbi 36675 bj-nfcsym 37016 matunitlindf 37731 ftc1anclem6 37811 lcvexchlem1 39206 ltrnatb 40309 cdlemg27b 40868 dvdsexpnn0 42504 fsuppind 42748 gicabl 43256 dfacbasgrp 43265 rp-fakeimass 43669 or3or 44180 radcnvrat 44471 eliooshift 45668 ellimcabssub0 45779 resccat 49235 |
| Copyright terms: Public domain | W3C validator |