| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2thd | Structured version Visualization version GIF version | ||
| Description: Two truths are equivalent. Deduction form. (Contributed by NM, 3-Jun-2012.) |
| Ref | Expression |
|---|---|
| 2thd.1 | ⊢ (𝜑 → 𝜓) |
| 2thd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| 2thd | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2thd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 2thd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | pm5.1im 263 | . 2 ⊢ (𝜓 → (𝜒 → (𝜓 ↔ 𝜒))) | |
| 4 | 1, 2, 3 | sylc 65 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 2falsed 376 biort 935 vtocl2d 3528 vtocl2 3532 vtocl3 3533 rspcime 3593 sbc2or 3762 disjprg 5103 euotd 5473 posn 5724 frsn 5726 cnvpo 6260 elabrex 7216 elabrexg 7217 riota5f 7372 smoord 8334 brwdom2 9526 finacn 10003 acacni 10094 dfac13 10096 fin1a2lem10 10362 gch2 10628 gchac 10634 recmulnq 10917 nn1m1nn 12207 nn0sub 12492 xnn0n0n1ge2b 13092 qextltlem 13162 xnn0lem1lt 13204 xsubge0 13221 xlesubadd 13223 iccshftr 13447 iccshftl 13449 iccdil 13451 icccntr 13453 fzaddel 13519 elfzomelpfzo 13732 sqlecan 14174 nnesq 14192 hashdom 14344 swrdspsleq 14630 repswsymballbi 14745 m1exp1 16346 bitsmod 16406 dvdssq 16537 pcdvdsb 16840 vdwmc2 16950 acsfn 17620 subsubc 17815 funcres2b 17859 isipodrs 18496 issubg3 19076 sdrgacs 20710 lmhmlvec 21017 opnnei 23007 lmss 23185 lmres 23187 cmpfi 23295 xkopt 23542 acufl 23804 lmhmclm 24987 equivcmet 25217 degltlem1 25977 mdegle0 25982 cxple2 26606 rlimcnp3 26877 dchrelbas3 27149 tgcolg 28481 hlbtwn 28538 eupth2lem3lem6 30162 ifnebib 32478 isoun 32625 subsdrg 33248 unitprodclb 33360 smatrcl 33786 msrrcl 35530 fz0n 35718 onint1 36437 bj-animbi 36547 bj-nfcsym 36887 matunitlindf 37612 ftc1anclem6 37692 lcvexchlem1 39027 ltrnatb 40131 cdlemg27b 40690 dvdsexpnn0 42322 fsuppind 42578 gicabl 43088 dfacbasgrp 43097 rp-fakeimass 43501 or3or 44012 radcnvrat 44303 eliooshift 45504 ellimcabssub0 45615 resccat 49063 |
| Copyright terms: Public domain | W3C validator |