MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.3 Structured version   Visualization version   GIF version

Theorem pm3.3 449
Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
pm3.3 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm3.3
StepHypRef Expression
1 id 22 . 2 (((𝜑𝜓) → 𝜒) → ((𝜑𝜓) → 𝜒))
21expd 416 1 (((𝜑𝜓) → 𝜒) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  impexp  451  pm4.79  1001  trer  34505  bj-alanim  34794  wl-mo3t  35731  trsbc  42160  simplbi2VD  42466  exbirVD  42473  exbiriVD  42474  3impexpVD  42476  trsbcVD  42497  simplbi2comtVD  42508
  Copyright terms: Public domain W3C validator