Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm3.3 | Structured version Visualization version GIF version |
Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
pm3.3 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
2 | 1 | expd 415 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: impexp 450 pm4.79 1000 trer 34432 bj-alanim 34721 wl-mo3t 35658 trsbc 42049 simplbi2VD 42355 exbirVD 42362 exbiriVD 42363 3impexpVD 42365 trsbcVD 42386 simplbi2comtVD 42397 |
Copyright terms: Public domain | W3C validator |