| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.3 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.3 (Exp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| pm3.3 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | 1 | expd 415 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: impexp 450 pm4.79 1006 trer 36317 bj-alanim 36613 wl-mo3t 37577 trsbc 44560 simplbi2VD 44866 exbirVD 44873 exbiriVD 44874 3impexpVD 44876 trsbcVD 44897 simplbi2comtVD 44908 |
| Copyright terms: Public domain | W3C validator |