Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alrim2 Structured version   Visualization version   GIF version

Theorem bj-alrim2 36707
Description: Uncurried (imported) form of bj-alrim 36706. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-alrim2 ((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (𝜑 → ∀𝑥𝜓))

Proof of Theorem bj-alrim2
StepHypRef Expression
1 bj-alrim 36706 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
21imp 406 1 ((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2179
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator