Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-alrim Structured version   Visualization version   GIF version

Theorem bj-alrim 34802
Description: Closed form of alrimi 2209. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-alrim (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))

Proof of Theorem bj-alrim
StepHypRef Expression
1 nf5r 2189 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
2 sylgt 1825 . 2 (∀𝑥(𝜑𝜓) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜓)))
31, 2syl5com 31 1 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  bj-alrim2  34803
  Copyright terms: Public domain W3C validator