Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12i Structured version   Visualization version   GIF version

Theorem bj-ax12i 34720
Description: A weakening of bj-ax12ig 34719 that is sufficient to prove a weak form of the axiom of substitution ax-12 2177. The general statement of which ax12i 1975 is an instance. (Contributed by BJ, 29-Sep-2019.)
Hypotheses
Ref Expression
bj-ax12i.1 (𝜑 → (𝜓𝜒))
bj-ax12i.2 (𝜒 → ∀𝑥𝜒)
Assertion
Ref Expression
bj-ax12i (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))

Proof of Theorem bj-ax12i
StepHypRef Expression
1 bj-ax12i.1 . 2 (𝜑 → (𝜓𝜒))
2 bj-ax12i.2 . . 3 (𝜒 → ∀𝑥𝜒)
32a1i 11 . 2 (𝜑 → (𝜒 → ∀𝑥𝜒))
41, 3bj-ax12ig 34719 1 (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  bj-ax12wlem  34727
  Copyright terms: Public domain W3C validator