Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfimt Structured version   Visualization version   GIF version

Theorem bj-nfimt 33570
 Description: Closed form of nfim 1879 and curried (exported) form of nfimt 1878. (Contributed by BJ, 20-Oct-2021.)
Assertion
Ref Expression
bj-nfimt (Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑𝜓)))

Proof of Theorem bj-nfimt
StepHypRef Expression
1 19.35 1860 . . . 4 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓))
2 id 22 . . . . . 6 (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑)
32nfrd 1774 . . . . 5 (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑))
43imim1d 82 . . . 4 (Ⅎ𝑥𝜑 → ((∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)))
51, 4syl5bi 243 . . 3 (Ⅎ𝑥𝜑 → (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)))
6 id 22 . . . . . 6 (Ⅎ𝑥𝜓 → Ⅎ𝑥𝜓)
76nfrd 1774 . . . . 5 (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → ∀𝑥𝜓))
87imim2d 57 . . . 4 (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
9 19.38 1821 . . . 4 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
108, 9syl6 35 . . 3 (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∃𝑥𝜓) → ∀𝑥(𝜑𝜓)))
115, 10syl9 77 . 2 (Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓))))
12 df-nf 1767 . 2 (Ⅎ𝑥(𝜑𝜓) ↔ (∃𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓)))
1311, 12syl6ibr 253 1 (Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1520  ∃wex 1762  Ⅎwnf 1766 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792 This theorem depends on definitions:  df-bi 208  df-ex 1763  df-nf 1767 This theorem is referenced by:  bj-dvelimdv1  33744
 Copyright terms: Public domain W3C validator