|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfimt | Structured version Visualization version GIF version | ||
| Description: Closed form of nfim 1896 and curried (exported) form of nfimt 1895. (Contributed by BJ, 20-Oct-2021.) | 
| Ref | Expression | 
|---|---|
| bj-nfimt | ⊢ (Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑 → 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.35 1877 | . . . 4 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | id 22 | . . . . . 6 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
| 3 | 2 | nfrd 1791 | . . . . 5 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) | 
| 4 | 3 | imim1d 82 | . . . 4 ⊢ (Ⅎ𝑥𝜑 → ((∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))) | 
| 5 | 1, 4 | biimtrid 242 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))) | 
| 6 | id 22 | . . . . . 6 ⊢ (Ⅎ𝑥𝜓 → Ⅎ𝑥𝜓) | |
| 7 | 6 | nfrd 1791 | . . . . 5 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → ∀𝑥𝜓)) | 
| 8 | 7 | imim2d 57 | . . . 4 ⊢ (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | 
| 9 | 19.38 1839 | . . . 4 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 10 | 8, 9 | syl6 35 | . . 3 ⊢ (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∃𝑥𝜓) → ∀𝑥(𝜑 → 𝜓))) | 
| 11 | 5, 10 | syl9 77 | . 2 ⊢ (Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → (∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))) | 
| 12 | df-nf 1784 | . 2 ⊢ (Ⅎ𝑥(𝜑 → 𝜓) ↔ (∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) | |
| 13 | 11, 12 | imbitrrdi 252 | 1 ⊢ (Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑 → 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: bj-dvelimdv1 36853 | 
| Copyright terms: Public domain | W3C validator |