Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ax12ig Structured version   Visualization version   GIF version

Theorem bj-ax12ig 34043
Description: A lemma used to prove a weak form of the axiom of substitution. A generalization of bj-ax12i 34044. (Contributed by BJ, 19-Dec-2020.)
Hypotheses
Ref Expression
bj-ax12ig.1 (𝜑 → (𝜓𝜒))
bj-ax12ig.2 (𝜑 → (𝜒 → ∀𝑥𝜒))
Assertion
Ref Expression
bj-ax12ig (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))

Proof of Theorem bj-ax12ig
StepHypRef Expression
1 bj-ax12ig.1 . . . 4 (𝜑 → (𝜓𝜒))
21pm5.32i 578 . . 3 ((𝜑𝜓) ↔ (𝜑𝜒))
3 bj-ax12ig.2 . . . . 5 (𝜑 → (𝜒 → ∀𝑥𝜒))
43imp 410 . . . 4 ((𝜑𝜒) → ∀𝑥𝜒)
51biimprcd 253 . . . 4 (𝜒 → (𝜑𝜓))
64, 5sylg 1824 . . 3 ((𝜑𝜒) → ∀𝑥(𝜑𝜓))
72, 6sylbi 220 . 2 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
87ex 416 1 (𝜑 → (𝜓 → ∀𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  bj-ax12i  34044
  Copyright terms: Public domain W3C validator