|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-bixor | Structured version Visualization version GIF version | ||
| Description: Equivalence of two ternary operations. Note the identical order and parenthesizing of the three arguments in both expressions. (Contributed by BJ, 31-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| bj-bixor | ⊢ ((𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ⊻ (𝜓 ↔ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.18 381 | . . 3 ⊢ ((𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 ↔ ¬ (𝜓 ↔ 𝜒))) | |
| 2 | 1 | con2bii 357 | . 2 ⊢ ((𝜑 ↔ ¬ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ↔ 𝜒))) | 
| 3 | df-xor 1511 | . . 3 ⊢ ((𝜓 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) | |
| 4 | 3 | bibi2i 337 | . 2 ⊢ ((𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ↔ ¬ (𝜓 ↔ 𝜒))) | 
| 5 | df-xor 1511 | . 2 ⊢ ((𝜑 ⊻ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
| 6 | 2, 4, 5 | 3bitr4i 303 | 1 ⊢ ((𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ⊻ (𝜓 ↔ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ⊻ wxo 1510 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1511 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |