Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-bixor | Structured version Visualization version GIF version |
Description: Equivalence of two ternary operations. Note the identical order and parenthesizing of the three arguments in both expressions. (Contributed by BJ, 31-Dec-2023.) |
Ref | Expression |
---|---|
bj-bixor | ⊢ ((𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ⊻ (𝜓 ↔ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.18 382 | . . 3 ⊢ ((𝜑 ↔ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 ↔ ¬ (𝜓 ↔ 𝜒))) | |
2 | 1 | con2bii 357 | . 2 ⊢ ((𝜑 ↔ ¬ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ↔ 𝜒))) |
3 | df-xor 1504 | . . 3 ⊢ ((𝜓 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) | |
4 | 3 | bibi2i 337 | . 2 ⊢ ((𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ↔ ¬ (𝜓 ↔ 𝜒))) |
5 | df-xor 1504 | . 2 ⊢ ((𝜑 ⊻ (𝜓 ↔ 𝜒)) ↔ ¬ (𝜑 ↔ (𝜓 ↔ 𝜒))) | |
6 | 2, 4, 5 | 3bitr4i 302 | 1 ⊢ ((𝜑 ↔ (𝜓 ⊻ 𝜒)) ↔ (𝜑 ⊻ (𝜓 ↔ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ⊻ wxo 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |