Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.18 Structured version   Visualization version   GIF version

Theorem pm5.18 386
 Description: Theorem *5.18 of [WhiteheadRussell] p. 124. This theorem says that logical equivalence is the same as negated "exclusive or". (Contributed by NM, 28-Jun-2002.) (Proof shortened by Andrew Salmon, 20-Jun-2011.) (Proof shortened by Wolf Lammen, 15-Oct-2013.)
Assertion
Ref Expression
pm5.18 ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))

Proof of Theorem pm5.18
StepHypRef Expression
1 pm5.501 370 . . . 4 (𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓)))
21con1bid 359 . . 3 (𝜑 → (¬ (𝜑 ↔ ¬ 𝜓) ↔ 𝜓))
3 pm5.501 370 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
42, 3bitr2d 283 . 2 (𝜑 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))
5 nbn2 374 . . . 4 𝜑 → (¬ ¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓)))
65con1bid 359 . . 3 𝜑 → (¬ (𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜓))
7 nbn2 374 . . 3 𝜑 → (¬ 𝜓 ↔ (𝜑𝜓)))
86, 7bitr2d 283 . 2 𝜑 → ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)))
94, 8pm2.61i 185 1 ((𝜑𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210 This theorem is referenced by:  xor3  387  pm5.19  391  pm5.16  1011  xorneg2  1513  bj-bixor  33985
 Copyright terms: Public domain W3C validator