Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.18 | Structured version Visualization version GIF version |
Description: Theorem *5.18 of [WhiteheadRussell] p. 124. This theorem says that logical equivalence is the same as negated "exclusive or". (Contributed by NM, 28-Jun-2002.) (Proof shortened by Andrew Salmon, 20-Jun-2011.) (Proof shortened by Wolf Lammen, 15-Oct-2013.) |
Ref | Expression |
---|---|
pm5.18 | ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.501 366 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓))) | |
2 | 1 | con1bid 355 | . . 3 ⊢ (𝜑 → (¬ (𝜑 ↔ ¬ 𝜓) ↔ 𝜓)) |
3 | pm5.501 366 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | |
4 | 2, 3 | bitr2d 279 | . 2 ⊢ (𝜑 → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))) |
5 | nbn2 370 | . . . 4 ⊢ (¬ 𝜑 → (¬ ¬ 𝜓 ↔ (𝜑 ↔ ¬ 𝜓))) | |
6 | 5 | con1bid 355 | . . 3 ⊢ (¬ 𝜑 → (¬ (𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜓)) |
7 | nbn2 370 | . . 3 ⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) | |
8 | 6, 7 | bitr2d 279 | . 2 ⊢ (¬ 𝜑 → ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓))) |
9 | 4, 8 | pm2.61i 182 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: xor3 383 pm5.19 387 pm5.16 1010 xorneg2 1514 bj-bixor 34700 |
Copyright terms: Public domain | W3C validator |