Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvexim | Structured version Visualization version GIF version |
Description: A lemma used to prove bj-cbvex 34758 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-cbvexim | ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax5e 1916 | . 2 ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) | |
2 | ax-5 1914 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
3 | 2 | ax-gen 1799 | . 2 ⊢ ∀𝑥(𝜑 → ∀𝑦𝜑) |
4 | bj-cbveximt 34748 | . . . 4 ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → ((∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) → (∃𝑥𝜑 → ∃𝑦𝜓))))) | |
5 | 4 | com3l 89 | . . 3 ⊢ (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥∃𝑦𝜒 → ((∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) → (∃𝑥𝜑 → ∃𝑦𝜓))))) |
6 | 5 | com14 96 | . 2 ⊢ ((∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) → (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓))))) |
7 | 1, 3, 6 | mp2 9 | 1 ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bj-cbveximi 34756 |
Copyright terms: Public domain | W3C validator |