| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvexim | Structured version Visualization version GIF version | ||
| Description: A lemma used to prove bj-cbvex 36629 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-cbvexim | ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax5e 1912 | . 2 ⊢ (∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) | |
| 2 | ax-5 1910 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 3 | 2 | ax-gen 1795 | . 2 ⊢ ∀𝑥(𝜑 → ∀𝑦𝜑) |
| 4 | bj-cbveximt 36619 | . . . 4 ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → ((∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) → (∃𝑥𝜑 → ∃𝑦𝜓))))) | |
| 5 | 4 | com3l 89 | . . 3 ⊢ (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥∃𝑦𝜒 → ((∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) → (∃𝑥𝜑 → ∃𝑦𝜓))))) |
| 6 | 5 | com14 96 | . 2 ⊢ ((∃𝑥∃𝑦𝜓 → ∃𝑦𝜓) → (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓))))) |
| 7 | 1, 3, 6 | mp2 9 | 1 ⊢ (∀𝑥∃𝑦𝜒 → (∀𝑥∀𝑦(𝜒 → (𝜑 → 𝜓)) → (∃𝑥𝜑 → ∃𝑦𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bj-cbveximi 36627 |
| Copyright terms: Public domain | W3C validator |