| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbvalim | Structured version Visualization version GIF version | ||
| Description: A lemma used to prove bj-cbval 36628 in a weak axiomatization. (Contributed by BJ, 12-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-cbvalim | ⊢ (∀𝑦∃𝑥𝜒 → (∀𝑦∀𝑥(𝜒 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax5e 1912 | . . 3 ⊢ (∃𝑥𝜓 → 𝜓) | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑦(∃𝑥𝜓 → 𝜓) |
| 3 | ax-5 1910 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 4 | bj-cbvalimt 36618 | . . . 4 ⊢ (∀𝑦∃𝑥𝜒 → (∀𝑦∀𝑥(𝜒 → (𝜑 → 𝜓)) → ((∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) → (∀𝑦(∃𝑥𝜓 → 𝜓) → (∀𝑥𝜑 → ∀𝑦𝜓))))) | |
| 5 | 4 | com3l 89 | . . 3 ⊢ (∀𝑦∀𝑥(𝜒 → (𝜑 → 𝜓)) → ((∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) → (∀𝑦∃𝑥𝜒 → (∀𝑦(∃𝑥𝜓 → 𝜓) → (∀𝑥𝜑 → ∀𝑦𝜓))))) |
| 6 | 5 | com14 96 | . 2 ⊢ (∀𝑦(∃𝑥𝜓 → 𝜓) → ((∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) → (∀𝑦∃𝑥𝜒 → (∀𝑦∀𝑥(𝜒 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∀𝑦𝜓))))) |
| 7 | 2, 3, 6 | mp2 9 | 1 ⊢ (∀𝑦∃𝑥𝜒 → (∀𝑦∀𝑥(𝜒 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bj-cbvalimi 36626 |
| Copyright terms: Public domain | W3C validator |