Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfbi6 | Structured version Visualization version GIF version |
Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.) |
Ref | Expression |
---|---|
bj-dfbi6 | ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-dfbi5 34682 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) | |
2 | id 22 | . . . 4 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓)) → ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) | |
3 | animorr 975 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∨ 𝜓)) | |
4 | 2, 3 | impbid1 224 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓)) → ((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓))) |
5 | biimp 214 | . . 3 ⊢ (((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓)) → ((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓))) | |
6 | 4, 5 | impbii 208 | . 2 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∧ 𝜓)) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓))) |
7 | 1, 6 | bitri 274 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |