Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-dfbi6 Structured version   Visualization version   GIF version

Theorem bj-dfbi6 34683
Description: Alternate definition of the biconditional. (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
bj-dfbi6 ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))

Proof of Theorem bj-dfbi6
StepHypRef Expression
1 bj-dfbi5 34682 . 2 ((𝜑𝜓) ↔ ((𝜑𝜓) → (𝜑𝜓)))
2 id 22 . . . 4 (((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓)))
3 animorr 975 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
42, 3impbid1 224 . . 3 (((𝜑𝜓) → (𝜑𝜓)) → ((𝜑𝜓) ↔ (𝜑𝜓)))
5 biimp 214 . . 3 (((𝜑𝜓) ↔ (𝜑𝜓)) → ((𝜑𝜓) → (𝜑𝜓)))
64, 5impbii 208 . 2 (((𝜑𝜓) → (𝜑𝜓)) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
71, 6bitri 274 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator